RESUMEN
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ohi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Asunto(s)
Aedes , Larva , Microbiota , Animales , Larva/microbiología , Larva/crecimiento & desarrollo , Aedes/microbiología , Aedes/crecimiento & desarrollo , Hojas de la Planta/microbiología , Psidium/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Interacciones Microbiota-Huesped , Hawaii , Ecosistema , Myrtaceae/microbiologíaRESUMEN
Four previously undescribed phloroglucinols, including three pairs of enantiomers, (±)-rhodotomentodimer F, (±)-rhodotomentodimer G, and (±)-rhodotomentomonomer E, and one phloroglucinol-sesquiterpene meroterpenoid, rhodotomentodione E, together with one previously reported congener, (±)-rhodomyrtosone A, were obtained from the leaves of Rhodomyrtus tomentosa. The structures including absolute configurations of previously undescribed isolates were elucidated by extensive spectroscopic analysis (HRESIMS and NMR), ECD calculations, and single-crystal X-ray diffraction. (±)-Rhodotomentodimer F is a rare phloroglucinol derivative conjugated by a ß-triketone moiety and an unprecedented resorcinol unit via the formation of a rare bis-furan ring system, whereas (±)-rhodotomentomonomer E shares a rearranged pentacyclic scaffold. Pharmacologically, (±)-rhodotomentomonomer E showed the strongest human acetylcholinesterase (hAChE) inhibitory effect with an IC50 value of 1.04 ± 0.05 µM. Molecular formula studies revealed that hydrogen bonds formed between hAChE residues Glu202, Ser203, Ala204, Gly121, Gly122, Tyr337, and His447 and (±)-rhodotomentomonomer E played crucial roles in its observed activity. These findings indicated that the leaves of Rhodomyrtus tomentosa can supply a rich source of hAChE inhibitors. These inhibitors might potentially be utilized in the therapeutic strategy for Alzheimer's disease, offering promising candidates for further research and development.
Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Myrtaceae , Floroglucinol , Floroglucinol/química , Floroglucinol/farmacología , Floroglucinol/aislamiento & purificación , Myrtaceae/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Humanos , Estructura Molecular , Hojas de la Planta/química , Relación Estructura-Actividad , Modelos MolecularesRESUMEN
Fruits produce a wide variety of secondary metabolites of great economic value. Analytical measurement of the metabolites is tedious, time-consuming, and expensive. Additionally, metabolite concentrations vary greatly from tree to tree, making it difficult to choose trees for fruit collection. The current study tested whether deep learning-based models can be developed using fruit and leaf images alone to predict a metabolite's concentration class (high or low). We collected fruits and leaves (n = 1045) from neem trees grown in the wild across 0.6 million sq km, imaged them, and measured concentration of five metabolites (azadirachtin, deacetyl-salannin, salannin, nimbin and nimbolide) using high-performance liquid chromatography. We used the data to train deep learning models for metabolite class prediction. The best model out of the seven tested (YOLOv5, GoogLeNet, InceptionNet, EfficientNet_B0, Resnext_50, Resnet18, and SqueezeNet) provided a validation F1 score of 0.93 and a test F1 score of 0.88. The sensitivity and specificity of the fruit model alone in the test set were 83.52 ± 6.19 and 82.35 ± 5.96, and 79.40 ± 8.50 and 85.64 ± 6.21, for the low and the high classes, respectively. The sensitivity was further boosted to 92.67± 5.25 for the low class and 88.11 ± 9.17 for the high class, and the specificity to 100% for both classes, using a multi-analyte framework. We incorporated the multi-analyte model in an Android mobile App Fruit-In-Sight that uses fruit and leaf images to decide whether to 'pick' or 'not pick' the fruits from a specific tree based on the metabolite concentration class. Our study provides evidence that images of fruits and leaves alone can predict the concentration class of a secondary metabolite without using expensive laboratory equipment and cumbersome analytical procedures, thus simplifying the process of choosing the right tree for fruit collection.
Asunto(s)
Aprendizaje Profundo , Frutas , Hojas de la Planta , Frutas/metabolismo , Frutas/química , Hojas de la Planta/metabolismo , Myrtaceae/metabolismo , Myrtaceae/química , Metabolismo Secundario , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Wounds or chronic injuries are associated with high medical costs so, develop healing-oriented drugs is a challenge for modern medicine. The identification of new therapeutic alternatives focuses on the use of natural products. Therefore, the main goal of this study was to evaluate the healing potential and anti-inflammatory mechanism of action of extracts and the main compounds derived from Myrciaria plinioides D. Legrand leaves. The antimicrobial activity of leaf extracts was analyzed. Cell viability, cytotoxicity and genotoxicity of plant extracts and compounds were also assessed. Release of pro- and anti-inflammatory cytokines and TGF-ß by ELISA, and protein expression was determined by Western Blot. The cell migration and cell proliferation of ethanol and aqueous leaf extracts and p-coumaric acid, quercetin and caffeic acid compounds were also evaluated. The aqueous extract exhibited antibacterial activity and, after determining the safety concentrations in three assays, we showed that this extract induced p38-α MAPK phosphorylation and the same extract and the p-coumaric acid decreased COX-2 and caspase-3, -8 expression, as well as reduced the TNF-α release and stimulated the IL-10 in RAW 264.7 cells. In L929 cells, the extract and p-coumaric acid induced TGF-ß release, besides increasing the process of cell migration and proliferation. These results suggested that the healing properties of Myrciaria plinioides aqueous extract can be associated to the presence of phenolic compounds, especially p-coumaric acid, and/or glycosylated metabolites.
Asunto(s)
Antiinflamatorios , Movimiento Celular , Extractos Vegetales , Hojas de la Planta , Cicatrización de Heridas , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Cicatrización de Heridas/efectos de los fármacos , Ratones , Células RAW 264.7 , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular , Citocinas/metabolismo , Myrtaceae/química , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificaciónRESUMEN
This work presents the isolation of endophytic fungi from the leaves of Campomanesia adamantium (Cambess.) O. Berg (Myrtaceae), a native species found in Brazil and popularly known as "guabiroba-do-campo", with abundant distribution in the Brazilian Cerrado. It has been popularly used for its anti-rheumatic, anti-inflammatory, antidiarrheal, blood cholesterol-reducing, urinary antiseptic, and depurative properties. Theese fungi are microorganisms that live inside higher plants, at least for a period of their life cycle, occupying the intercellular spaces of plant tissues such as leaves and stems. These fungi are harmless to the host plant, and their secondary metabolites promote protection, regulate growth, combat bacteria, viruses, and fungi, and promote resistance to abiotic stress, as well as insecticidal effects. Endophytic fungi associated with the leaves of C. adamantium were isolated using the culture medium isolation technique. After growth, the fungi were divided into groups based on morphotypes. Fungal genomic DNA was extracted, and a polymerase chain reaction (PCR) was conducted to amplify the ITS1-5.8S-ITS2 regions of rRNA, and the nucleotide sequences obtained were compared with those available in the GenBank database for molecular identification of the isolates. The phylogenetic tree was constructed using MEGA 11 software. The results showed representatives of the Ascomycota phylum, and it was possible to identify at the genus level 18 fungi of the genera Colletotrichum, Diaporthe, Epicoccum, and Neofusicoccum.
Asunto(s)
Endófitos , Hongos , Myrtaceae , Hojas de la Planta , Endófitos/aislamiento & purificación , Endófitos/clasificación , Endófitos/genética , Brasil , Myrtaceae/microbiología , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Hojas de la Planta/microbiología , ADN de Hongos/genética , Reacción en Cadena de la Polimerasa , FilogeniaRESUMEN
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.
Asunto(s)
Hemípteros , Repelentes de Insectos , Insecticidas , Myrtaceae , Aceites Volátiles , Animales , Aceites Volátiles/química , Aceites Volátiles/farmacología , Hemípteros/efectos de los fármacos , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Myrtaceae/química , Insecticidas/química , Insecticidas/farmacología , Citrus/química , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas/química , Aceites de Plantas/farmacologíaRESUMEN
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Asunto(s)
Antocianinas , Antioxidantes , Goma Arábiga , Polifenoles , Polisacáridos , Polifenoles/análisis , Humanos , Polisacáridos/química , Antioxidantes/análisis , Goma Arábiga/química , Antocianinas/análisis , Extractos Vegetales/química , Productos Lácteos/análisis , Glucemia/metabolismo , Frutas/química , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Digestión , Myrtaceae/química , Composición de Medicamentos , Índice Glucémico , Femenino , Masculino , AdultoRESUMEN
BACKGROUND: Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and ß-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear. RESULTS: Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family. CONCLUSIONS: The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.
Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genoma de Planta , Genómica , Myrtaceae , Terpenos , Terpenos/metabolismo , Genómica/métodos , Myrtaceae/genética , Myrtaceae/metabolismo , Cromosomas de las Plantas/genética , Filogenia , Familia de MultigenesRESUMEN
The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.
Asunto(s)
Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Insecticidas/química , Insecticidas/farmacología , Myrtaceae/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Animales , Aceites de Plantas/farmacología , Aceites de Plantas/químicaRESUMEN
In the forest industry, interspecific hybridization, such as Eucalyptus urograndis (Eucalyptus grandis × Eucalyptus urophylla) and Corymbia maculata × Corymbia torelliana, has led to the development of high-performing F1 generations. The successful breeding of these hybrids relies on verifying progenitor origins and confirming post-crossing, but conventional genotype identification methods are resource-intensive and result in seed destruction. As an alternative, multispectral imaging analysis has emerged as an efficient and non-destructive tool for seed phenotyping. This approach has demonstrated success in various crop seeds. However, identifying seed species in the context of forest seeds presents unique challenges due to their natural phenotypic variability and the striking resemblance between different species. This study evaluates the efficacy of spectral imaging analysis in distinguishing hybrid seeds of E. urograndis and C. maculata × C. torelliana from their progenitors. Four experiments were conducted: one for Corymbia spp. seeds, one for each Eucalyptus spp. batch separately, and one for pooled batches. Multispectral images were acquired at 19 wavelengths within the spectral range of 365-970 nm. Classification models based on Linear Discriminant Analysis (LDA), Random Forest (RF), and Support Vector Machine (SVM) was created using reflectance and reflectance features, combined with color, shape, and texture features, as well as nCDA transformed features. The LDA algorithm, combining all features, provided the highest accuracy, reaching 98.15% for Corymbia spp., and 92.75%, 85.38, and 86.00 for Eucalyptus batch one, two, and pooled batches, respectively. The study demonstrated the effectiveness of multispectral imaging in distinguishing hybrid seeds of Eucalyptus and Corymbia species. The seeds' spectral signature played a key role in this differentiation. This technology holds great potential for non-invasively classifying forest seeds in breeding programs.
Asunto(s)
Eucalyptus , Bosques , Semillas , Hibridación Genética , Myrtaceae , Análisis DiscriminanteRESUMEN
Physical activities that are unaccustomed and involve eccentric muscle contractions have been demonstrated to temporarily impair macrovascular and microvascular functions, which may be caused by exercise-induced oxidative stress. Jaboticaba (Myrciaria jaboticaba) is a famous Brazilian berry that has been described to exhibit high antioxidant activity. However, no human study has investigated the protective effects of jaboticaba consumption against the vascular damage induced by eccentric exercise. Therefore, the present study aimed to assess whether supplementation with jaboticaba berry juice could positively affect macro- and microvascular functions within 48 hours after eccentric exercise. This randomized, double-blind, placebo-controlled, parallel trial enrolled 24 healthy participants consuming 250 mL per day of jaboticaba berry juice (containing â¼1,300 mg of total polyphenols) or placebo for 6 days. At the baseline, pre-exercise, and 24 h and 48 h postexercise stages, blood samples were taken for analysis of reduced glutathione (GSH) levels. Also, brachial artery flow-mediated dilation (FMD), blood flow, and tissue oxygen saturation (StO2) responses to 5-minute cuff occlusion were assessed using Doppler ultrasound and near-infrared spectroscopy, respectively. Our findings revealed significant decreases in blood GSH (P < 0.001, ES = 0.76), FMD (P = 0.005, ES = 0.48), reperfusion slope of StO2 (P = 0.018, ES = 0.42) at 24 h and blood flow (P = 0.012, ES = 0.42) at 48 h following eccentric exercise in the control group as compared to the jaboticaba berry juice group. Our results demonstrated that jaboticaba berry juice prevented the exercise-induced increase in reactive oxygen species production and protected macro- and microvascular functions against the damage caused by eccentric exercise, suggesting that jaboticaba berry consumption could protect the vascular function under conditions of imbalance in redox homeostasis.
Asunto(s)
Suplementos Dietéticos , Ejercicio Físico , Jugos de Frutas y Vegetales , Frutas , Myrtaceae , Humanos , Masculino , Myrtaceae/química , Método Doble Ciego , Frutas/química , Adulto , Adulto Joven , Femenino , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Arteria Braquial/efectos de los fármacos , Glutatión/metabolismoRESUMEN
This study determined chemical profiles, antibacterial and antibiofilm activities of the essential oils (EOs) obtained by A. visnaga aerial parts and F. vulgare fruits. Butanoic acid, 2-methyl-, 3-methylbutyl ester (38.8%), linalyl propionate (34.7%) and limonene (8.5%) resulted as main constituents of A. visnaga EO. In F. vulgare EO trans-anethole (76.9%) and fenchone (14.1%) resulted as main components. The two EOs were active against five bacterial strains (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) at different degrees. The MIC values ranged from 5 ± 2 to 10 ± 2 µL/mL except for S. aureus (MIC >20 µL/mL). EOs exhibited inhibitory effect on the formation of biofilm up to 53.56 and 48.04% against E. coli and A. baumannii, respectively and activity against bacterial metabolism against A. baumannii and E. coli, with biofilm-inhibition ranging from 61.73 to 73.55%. The binding affinity of the identified components was estimated by docking them into the binding site of S. aureus gyrase (PDB code 2XCT) and S. aureus tyrosyl-tRNA synthetase (PDB code 1JIJ). trans-Anethole and butanoic acid, 2-methyl-, 3-methylbutyl ester showed relatively moderate binding interactions with the amino acid residues of S. aureus tyrosyl-tRNA synthetase. In addition, almost all predicted compounds possess good pharmacokinetic properties with no toxicity, being inactive for cytotoxicity, carcinogenicity, hepatotoxicity, mutagenicity and immunotoxicity parameters. The results encourage the use of these EOs as natural antibacterial agents in food and pharmaceutical industries.
Asunto(s)
Derivados de Alilbenceno , Antibacterianos , Biopelículas , Foeniculum , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Aceites Volátiles , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Aceites Volátiles/farmacología , Aceites Volátiles/química , Foeniculum/química , Myrtaceae/química , Frutas/química , Anisoles/farmacología , Anisoles/química , Anisoles/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Canfanos , NorbornanosRESUMEN
Austropuccinia psidii is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating A. psidii urediniospores and in Leptospermum scoparium-inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated L. scoparium control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, whereas susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the L. scoparium hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to A. psidii challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host-range obligate biotrophic basidiomycete.
Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Fenotipo , Enfermedades de las Plantas , Hojas de la Planta , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/genética , Myrtaceae/microbiología , Myrtaceae/genética , Myrtaceae/inmunología , Regulación de la Expresión Génica de las PlantasRESUMEN
Phenolic compounds, present in plants, provide substantial health advantages, such as antioxidant and anti-inflammatory properties, which enhance cardiovascular and cognitive well-being. Australia is enriched with a wide range of plants with phytopharmacological potential, which needs to be fully elucidated. In this context, we analyzed leaves of aniseed myrtle (Syzygium anisatum), lemon myrtle (Backhousia citriodora), and cinnamon myrtle (Backhousia myrtifolia) for their complex phytochemical profile and antioxidant potential. LC-ESI-QTOF-MS/MS was applied for screening and characterizing these Australian myrtles' phenolic compounds and the structure-function relation of phenolic compounds. This study identified 145 and quantified/semi-quantified 27 phenolic compounds in these Australian myrtles. Furthermore, phenolic contents (total phenolic content (TPC), total condensed tannins (TCT), and total flavonoids (TFC)) and antioxidant potential of phenolic extracts from the leaves of Australian myrtles were quantified. Aniseed myrtle was quantified with the highest TPC (52.49 ± 3.55 mg GAE/g) and total antioxidant potential than other selected myrtles. Catechin, epicatechin, isovitexin, cinnamic acid, and quercetin were quantified as Australian myrtles' most abundant phenolic compounds. Moreover, chemometric analysis further validated the results. This study provides a new insight into the novel potent bioactive phenolic compounds from Australian myrtles that could be potentially useful for functional, nutraceutical, and therapeutic applications.
Asunto(s)
Antioxidantes , Fenoles , Extractos Vegetales , Hojas de la Planta , Espectrometría de Masas en Tándem , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masas en Tándem/métodos , Fenoles/química , Fenoles/análisis , Australia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cromatografía Liquida/métodos , Flavonoides/química , Flavonoides/análisis , Espectrometría de Masa por Ionización de Electrospray , Myrtaceae/químicaRESUMEN
Jabuticaba peel, rich in antioxidants, offering health benefits. In this study, the extraction of phenolic compounds from jabuticaba peel using ultrasound-assisted (UA) and their subsequent concentration by nanofiltration (NF) employing a polyamide 200 Da membrane was evaluated. The UA extractions were conducted using the Central Composite Rotatable Design (CCRD) 22 methodology, with independent variables extraction time (11.55 to 138 min) and temperature (16.87 to 53.3 °C), and fixed variables mass to ethanol solution concentration at pH 1.0 (1:25 g/mL), granulometry (1 mm), and ultrasonic power (52.8 W). The maximum concentrations obtained were 700.94 mg CE/100 g for anthocyanins, 945.21 mg QE/100 g for flavonoids, 133.19 mg GAE/g for phenols, and an antioxidant activity IC50 of 24.36 µg/mL. Key phenolic compounds identified included cyanidin-3-glucoside, delphinidin-3-glucoside, and various acids like syringic and gallic. NF successfully concentrated these compounds, enhancing their yield by up to 45%. UA and NF integrate for sustainable extraction.
Asunto(s)
Antioxidantes , Frutas , Fenoles , Extractos Vegetales , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Frutas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Filtración , Myrtaceae/química , Antocianinas/química , Antocianinas/aislamiento & purificación , Fraccionamiento Químico/métodosRESUMEN
PREMISE: Increasingly complete phylogenies underpin studies in systematics, ecology, and evolution. Myrteae (Myrtaceae), with ~2700 species, is a key component of the exceptionally diverse Neotropical flora, but given its complicated taxonomy, automated assembling of molecular supermatrices from public databases often lead to unreliable topologies due to poor species identification. METHODS: Here, we build a taxonomically verified molecular supermatrix of Neotropical Myrteae by assembling 3909 published and 1004 unpublished sequences from two nuclear and seven plastid molecular markers. We infer a time-calibrated phylogenetic tree that covers 712 species of Myrteae (~28% of the total diversity in the clade) and evaluate geographic and taxonomic gaps in sampling. RESULTS: The tree inferred from the fully concatenated matrix mostly reflects the topology of the plastid data set and there is a moderate to strong incongruence between trees inferred from nuclear and plastid partitions. Large, species-rich genera are still the poorest sampled within the group. Eastern South America is the best-represented area in proportion to its species diversity, while Western Amazon, Mesoamerica, and the Caribbean are the least represented. CONCLUSIONS: We provide a time-calibrated tree that can be more reliably used to address finer-scale eco-evolutionary questions that involve this group in the Neotropics. Gaps to be filled by future studies include improving representation of taxa and areas that remain poorly sampled, investigating causes of conflict between nuclear and plastid partitions, and the role of hybridization and incomplete lineage sorting in relationships that are poorly supported.
Asunto(s)
Myrtaceae , Filogenia , Myrtaceae/genética , Myrtaceae/clasificación , América del Sur , Plastidios/genéticaRESUMEN
Myrtaceae family includes many species with taxonomic challenges, making it one of the most complex families to identify. This study used DNA barcoding to find molecular markers for species authentication based on the Myrtaceae family's chemical composition and genetic diversity. Essential oils and genetic material were extracted from the leaves of six different species: Eugenia uniflora, E. patrisii, Myrcia splendens, Psidium guajava, P. guineense, and Psidium sp. The samples were analyzed based on compound classes and grouped into two categories. Group I included samples with high amounts of oxygenated sesquiterpenes (3.69-76.05 %) and fatty acid derivatives (0.04-43.59 %), such as E. uniflora, Myrcia splendens, and E. patrisii. Group II included samples P. guajava, P. guineense, and Psidium sp., which had a significant content of monoterpene hydrocarbons (0.69-72.35 %), oxygenated sesquiterpenes (8.06-68.1 %), phenylpropanoids (0.45-22.59 %), and sesquiterpene hydrocarbons (0.27-21.84 %). The PsbA-trnH gene sequences had a high genetic variability, allowing the species to be distinguished. A phylogenetic analysis showed two main clusters with high Bootstrap values corresponding to the subtribes Eugeniineae, Myrciinae, and Pimentinae. The results suggest a weak correlation between genetic and chemical data in these Myrtaceae species.
Asunto(s)
Código de Barras del ADN Taxonómico , Myrtaceae , Aceites Volátiles , Brasil , Aceites Volátiles/química , Myrtaceae/química , Myrtaceae/genética , Hojas de la Planta/química , ADN de Plantas/genéticaRESUMEN
Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.
Asunto(s)
Arecaceae , Bosques , Frutas , Myrtaceae , Frutas/química , Brasil , Humanos , Myrtaceae/química , Arecaceae/química , Eugenia/química , Fitoquímicos/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , Extractos Vegetales/químicaRESUMEN
The Caatinga, an exclusively Brazilian biome, stands as a reservoir of remarkable biodiversity. Its significance transcends ecological dimensions, given the direct reliance of the local population on its resources for sustenance and healthcare. While Myrtaceae, a pivotal botanical family within the Brazilian flora, has been extensively explored for its medicinal and nutritional attributes, scant attention has been directed towards its contextual relevance within the Caatinga's local communities. Consequently, this inaugural systematic review addresses the ethnobotanical roles of Myrtaceae within the Caatinga, meticulously anchored in the PRISMA 2020 guidelines. We searched Scopus, MEDLINE/Pubmed, Scielo, and LILIACS. No date-range filter was applied. An initial pool of 203 articles was carefully scrutinized, ultimately yielding 31 pertinent ethnobotanical studies elucidating the utility of Myrtaceae amongst the Caatinga's indigenous populations. Collectively, they revealed seven distinct utilization categories spanning ~54 species and 11 genera. Psidium and Eugenia were the genera with the most applications. The most cited categories of use were food (27 species) and medicinal (22 species). The importance of accurate species identification was highlighted, as many studies did not provide enough information for reliable identification. Additionally, the potential contribution of Myrtaceae fruits to food security and human health was explored. The diversity of uses demonstrates how this family is a valuable resource for local communities, providing sources of food, medicine, energy, and construction materials. This systematic review also highlights the need for more ethnobotanical studies to understand fully the relevance of Myrtaceae species in the Caatinga, promoting biodiversity conservation, as well as support for local populations.
Asunto(s)
Etnobotánica , Myrtaceae , Brasil , Humanos , Biodiversidad , Plantas Medicinales/clasificaciónRESUMEN
BACKGROUND: Acne vulgaris, a common chronic dermatological condition worldwide, is associated with inflammatory response and Cutibacterium acnes. Individuals with acne vulgaris and sensitive skin have limited suitable treatments due to the skin irritation and side effects exhibited by current hydroxy acidic medications. AIMS: This study aimed to evaluate the synergistic effects of Guaiacum officinale (GO) and Rhodomyrtus Tomentosa (RT) extracts for treating acne vulgaris on sensitive skin by inhibiting inflammation. METHODS: The phytochemical constituents and antioxidant activity of GO and RT extracts were determined in vitro. The anti-inflammatory effects were investigated in peptidoglycan (PGN)-induced HaCaT cells. Further, a 28-day clinical trial was conducted involving 30 subjects with both sensitive skin and acne to evaluate the efficacy and subjects' satisfaction. RESULTS: Total phenolics and flavonoids were detected in GO and RT extracts, the IC50 values for DPPH radical scavenging were 6.15 wt% and 0.76 wt%, respectively. The combination of GO and RT extracts at a 1:1 (v/v) ratio significantly decreased the expression of TLR-2 and TLR-4, as well as the secretion of IL-1α, IL-8, and TNF-α in PGN-induced HaCaT cells, by 2.30-7.93 times compared to GO extract alone (p < 0.05). Moreover, the cream containing 5 wt% the combination significantly improved facial acne and redness (p < 0.05). The number of comedones decreased by 50.00% and papules by 30.65% after 28 days of application. No adverse events were reported and 96.67% of the subjects were satisfied with the treatment. CONCLUSION: The efficacy of the GO and RT extracts in synergistically suppressing inflammation, improving acne vulgaris, and reducing redness. The study offers an effective and non-irritant treatment for acne vulgaris in individuals with sensitive skin.