Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.421
Filtrar
1.
Sci Rep ; 14(1): 11042, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745058

RESUMEN

Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.


Asunto(s)
Níquel , Trigonella , Ácido gamma-Aminobutírico , Níquel/toxicidad , Ácido gamma-Aminobutírico/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad
2.
Ecotoxicol Environ Saf ; 276: 116305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599158

RESUMEN

The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.


Asunto(s)
Minas de Carbón , Productos Agrícolas , Metales Pesados , Contaminantes del Suelo , Humanos , China , Medición de Riesgo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adolescente , Niño , Adulto , Adulto Joven , Níquel/análisis , Níquel/toxicidad , Contaminación de Alimentos/análisis , Monitoreo del Ambiente , Método de Montecarlo , Oryza , Preescolar , Zea mays , Glycine max , Femenino , Arsénico/análisis , Masculino
3.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605329

RESUMEN

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Asunto(s)
Brassica , Compostaje , Ácidos Indolacéticos , Contaminantes del Suelo , Humanos , Níquel/metabolismo , Níquel/toxicidad , Brassica/metabolismo , Peróxido de Hidrógeno/metabolismo , Rizosfera , Clorofila A , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
4.
Chemosphere ; 357: 142028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621494

RESUMEN

Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.


Asunto(s)
Níquel , Plantas , Microbiología del Suelo , Contaminantes del Suelo , Níquel/toxicidad , Níquel/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Humanos , Plantas/efectos de los fármacos , Plantas/metabolismo , Ecosistema , Suelo/química , Monitoreo del Ambiente
5.
Neurotox Res ; 42(2): 24, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598025

RESUMEN

The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.


Asunto(s)
Melatonina , Síndromes de Neurotoxicidad , Masculino , Ratas , Animales , Antioxidantes/farmacología , Melatonina/farmacología , Melatonina/uso terapéutico , Níquel/toxicidad , Ratas Wistar , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control
6.
Chemosphere ; 357: 142091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648987

RESUMEN

The two trace elements cobalt (Co) and nickel (Ni) are widely distributed in the environment due to the increasing industrial application, for example in lithium-ion batteries. Both metals are known to cause detrimental health impacts to humans when overexposed and both are supposed to be a risk factor for various diseases. The individual toxicity of Co and Ni has been partially investigated, however the underlying mechanisms, as well as the interactions of both remain unknown. In this study, we focused on the treatment of liver carcinoma (HepG2) and astrocytoma (CCF-STTG1) cells as a model for the target sites of these two metals. We investigated their effects in single and combined exposure on cell survival, cell death mechanisms, bioavailability, and the induction of oxidative stress. The combination of CoCl2 and NiCl2 resulted in higher Co levels with subsequent decreased amount of Ni compared to the individual treatment. Only CoCl2 and the combination of both metals led to RONS induction and increased GSSG formation, while apoptosis and necrosis seem to be involved in the cell death mechanisms of both CoCl2 and NiCl2. Collectively, this study demonstrates cell-type specific toxicity, with HepG2 representing the more sensitive cell line. Importantly, combined exposure to CoCl2 and NiCl2 is more toxic than single exposure, which may originate partly from the respective cellular Co and Ni content. Our data imply that the major mechanism of joint toxicity is associated with oxidative stress. More studies are needed to assess toxicity after combined exposure to elements such as Co and Ni to advance an improved hazard prediction for less artificial and more real-life exposure scenarios.


Asunto(s)
Supervivencia Celular , Cobalto , Hígado , Níquel , Estrés Oxidativo , Cobalto/toxicidad , Humanos , Níquel/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Disponibilidad Biológica , Línea Celular Tumoral
7.
Ren Fail ; 46(1): 2344656, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38685608

RESUMEN

Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.


Asunto(s)
Antioxidantes , Ácido Gálico , Riñón , Níquel , Estrés Oxidativo , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Animales , Níquel/toxicidad , Masculino , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Nanopartículas
8.
Environ Sci Pollut Res Int ; 31(20): 29777-29793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592634

RESUMEN

The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.


Asunto(s)
Cambio Climático , Nanopartículas del Metal , Animales , Nanopartículas del Metal/toxicidad , Anuros , Níquel/toxicidad , Óxido de Zinc/toxicidad , Larva/efectos de los fármacos , Titanio/toxicidad , Óxido de Aluminio/toxicidad
9.
J Hazard Mater ; 471: 134295, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631253

RESUMEN

There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.


Asunto(s)
Cobalto , Níquel , Microbiología del Suelo , Contaminantes del Suelo , Níquel/toxicidad , Níquel/química , Cobalto/química , Cobalto/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/toxicidad , Metales Pesados/química , Disponibilidad Biológica , Minería , Germinación/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fuerza Compresiva , Residuos Industriales
10.
Environ Toxicol ; 39(6): 3597-3611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488660

RESUMEN

Nickel (Ni) is recognized as a carcinogenic metal, and its widespread use has led to severe environmental and health problems. Although the lung is among the main organs affected by Ni, the precise mechanisms behind this effect remain poorly understood. This study aimed to elucidate the physiological mechanisms underlying Ni-induced pulmonary fibrosis (PF), using various techniques including histopathological detection, biochemical analysis, immunohistochemistry, western blotting, and quantitative real-time PCR. Mice were treated with nickel chloride (NiCl2), which induced PF (detected by Masson staining), up-regulation of α-smooth muscle actin (α-SMA), and collagen-1 mRNA and protein expression. NiCl2 was found to induce PF by: activation of the epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß1 (TGF-ß1)/Smad signaling pathway; up-regulation of protein and mRNA expression of TGF-ß1, p-Smad2, p-Smad3, vimentin, and N-cadherin; and down-regulation of protein and mRNA expression of E-cadherin. In addition, NiCl2 treatment increased malondialdehyde content while inhibiting antioxidant activity, as indicated by decreased catalase, total antioxidant capacity, and superoxide dismutase activities, and glutathione content. Co-treatment with the effective antioxidant and free radical scavenger N-acetyl cysteine (NAC) plus NiCl2 was used to study the effects of oxidative stress in NiCl2-induced PF. The addition of NAC significantly mitigated NiCl2-induced PF, and reversed activation of the TGF-ß1/Smad signaling pathway and EMT. NiCl2-induced PF was therefore shown to be due to EMT activation via the TGF-ß1/Smad signaling pathway, mediated by oxidative stress.


Asunto(s)
Transición Epitelial-Mesenquimal , Níquel , Estrés Oxidativo , Fibrosis Pulmonar , Transducción de Señal , Proteínas Smad , Factor de Crecimiento Transformador beta1 , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Níquel/toxicidad , Estrés Oxidativo/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transducción de Señal/efectos de los fármacos , Ratones , Proteínas Smad/metabolismo , Masculino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
11.
Environ Toxicol Chem ; 43(5): 1097-1111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488680

RESUMEN

The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Níquel , Cloruro de Potasio , Reproducción , Contaminantes Químicos del Agua , Animales , Níquel/toxicidad , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Cloruro de Potasio/toxicidad , Femenino , Bivalvos/efectos de los fármacos , Bivalvos/crecimiento & desarrollo , Unionidae/efectos de los fármacos , Unionidae/crecimiento & desarrollo
12.
Chem Biol Interact ; 394: 110975, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552765

RESUMEN

Nickel (Ni) and its compounds are common, widely distributed components of hazardous waste in the chemical industry. Excessive exposure to Ni can cause kidney damage in humans and animals. We investigated the impact of Ni on renal mitochondria using in vivo and in vitro models of Ni nephrotoxicity, and explored the Ni nephrotoxic mechanism. We showed that nickel chloride (NiCl2) damaged the renal mitochondria, causing mitochondrial swelling, breakage of the mitochondrial cristae, increased levels of mitochondrial reactive oxygen species (mt-ROS), and depolarization of the mitochondrial membrane potential (MMP). The levels of the mitochondrial respiratory chain complexes I-IV were reduced in the kidneys of mice treated with NiCl2. In addition, NiCl2 treatment inhibited mitochondrial biogenesis in renal cells by down-regulating mRNA and the protein expression of TFAM, PGC-1α, and NRF1. Moreover, NiCl2 reduced the levels of the proteins involved in mitochondrial fusion, including Mfn1 and Mfn2, while significantly augmenting the levels of the proteins Fis1 and Drip1 involved in mitochondrial fission in renal cells. Taken together, these results suggested that NiCl2 inhibited mitochondrial biogenesis, suppressed mitochondrial fusion, and promoted mitochondrial fission, resulting in mitochondrial dysfunction in renal cells, ultimately causing renal injury. This study provided novel insights into the mechanisms of nephrotoxicity of Ni and new ideas for the development of targeted treatments for Ni-induced kidney injury.


Asunto(s)
Riñón , Potencial de la Membrana Mitocondrial , Mitocondrias , Dinámicas Mitocondriales , Níquel , Biogénesis de Organelos , Especies Reactivas de Oxígeno , Níquel/toxicidad , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Masculino , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular
13.
PLoS One ; 19(3): e0300800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512976

RESUMEN

Mining wastewater with heavy metals poses a serious threat to the ecological environment. However, the acute single and combined ecological effects of heavy metals, such as chromium (Cr) and nickel (Ni), on freshwater ostracods, and the development of relevant prediction models, remain poorly understood. In this study, Heterocypris sp. was chosen to investigate the single and combined acute toxicity of Cr and Ni. Then, the quantitative structure-activity relationship (QSAR) model was used to predict the combined toxicity of Cr and Ni. The single acute toxicity experiments revealed high toxicity for both Cr and Ni. In addition, Cr exhibited greater toxicity compared to Ni, as evidenced by its lower 96-hour half-lethal concentration (LC50) of 1.07 mg/L compared to 4.7 mg/L for Ni. Furthermore, the combined acute toxicity experiments showed that the toxicity of Cr-Ni was higher than Ni but lower than Cr. Compared with the concentration addition (CA) and independent action (IA) models, the predicted results of the QSAR model were more consistent with the experimental results for the Cr-Ni combined acute toxicity. So, the high accuracy of QSAR model identified its feasibility to predict the toxicity of heavy metal pollutants in mining wastewater.


Asunto(s)
Metales Pesados , Níquel , Animales , Níquel/toxicidad , Níquel/análisis , Cromo/toxicidad , Cromo/análisis , Relación Estructura-Actividad Cuantitativa , Aguas Residuales/toxicidad , Metales Pesados/toxicidad , Metales Pesados/análisis , Crustáceos , Monitoreo del Ambiente
14.
ACS Biomater Sci Eng ; 10(4): 2534-2551, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38525821

RESUMEN

In vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.


Asunto(s)
Modelos Biológicos , Níquel , Animales , Humanos , Níquel/toxicidad , Distribución Tisular , Toxicocinética , Stents/efectos adversos , Iones , Mamíferos
15.
Ecotoxicol Environ Saf ; 273: 116150, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430579

RESUMEN

Nickel (Ni), an environmental health hazard, is nephrotoxic to humans, but the exact mechanism is unknown. This study aims to identify whether nephrotoxicity is associated with autophagy. Here, nickel chloride (NiCl2) increased autophagy in TCMK-1 cells. NiCl2 induces autophagy through Akt and AMPK/mTOR pathways. Next, oxidative stress was investigated in NiCl2-induced autophagy. The findings demonstrated that the antioxidant (NAC) or mitochondrial targeted antioxidant (Mito-TEMPO) attenuated NiCl2-induced autophagy, reversed the influence on AMPK-mTOR and Akt pathways. Additionally, our study examined the role of autophagy in NiCl2-induced nephrotoxicity. Autophagy inhibition with 3-MA could inhibit cell viability and increase apoptosis in the TCMK-1 cells, however, autophagy promotion with rapamycin relieved cytotoxicity and decreased apoptosis. Additionally, co-treatment with Z-VAD-FMK reduced cytotoxicity, but did not affect autophagy. Besides, NiCl2 can increase the level of mitophagy in vivo and vitro. Mitophagy inhibition could inhibit cell viability and increase apoptosis in the TCMK-1 cells, whereas, promotion of mitophagy could increase cell viability and decrease apoptosis. In summary, above-mentioned results showed that NiCl2 induces autophagy in TCMK-1 cells through oxidative stress-dependent AMPK/AKT-mTOR pathway, autophagy plays a role in reducing NiCl2-induced renal toxicity, and a major mechanism in autophagy's inhibitory effect on NiCl2-induced apoptosis may be mitophagy.


Asunto(s)
Antioxidantes , Proteínas Proto-Oncogénicas c-akt , Humanos , Antioxidantes/farmacología , Níquel/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Autofagia
16.
Sci Total Environ ; 926: 171921, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522525

RESUMEN

Exposure to Cr and/or Ni can have widespread implications on the environment and health. However, the specific toxic effects of chronic Cr and Ni co-exposure on mice liver have not been reported. To ascertain the combined toxic effects of chronic Cr and Ni co-exposure on liver damage in mice, 80 6-week-old female C57BL/6 J mice were randomly divided into 4 groups: the Con group, Cr group (Cr+6 50 mg/L), Ni group (Ni+2 110 mg/L), and Cr + Ni group (Cr+6 50 mg/L + Ni+2 110 mg/L). The trial period lasted for 16 weeks. The results showed that Cr+6 and/or Ni+2 increased liver weight and liver index (P < 0.05) in mice, caused histological abnormality and ultrastructural damage, and micronutrients imbalance in mice liver. These findings serve as the basis for subsequent experiments. Compared with the individual exposure group, chronic Cr and Ni co-exposure resulted in decreased levels and activities of ALT, AST, MDA, T-AOC, and T-SOD (P < 0.05) in liver tissue, and decreased the mRNA expression levels of the TLR4/mTOR pathway related factors (TLR4, TRAM, TRIF, TBK-1, IRF-3, MyD88, IRAK-4, TRAF6, TAK-1, IKKß, NF-κB, IL-1ß, IL-6, TNFα, ULK1, Beclin 1, LC3) (P < 0.05) and decreased the protein expression levels of the factors (TLR4, MyD88, TRAF6, NF-κB p50, IL-6, TNFα, ULK1, LC3II/LC3I) (P < 0.05). Moreover, factorial analysis revealed the interaction between Cr and Ni, which was manifested as antagonistic effects on Cr concentration, Ni concentration, and TLR4, MyD88, NF-κB, mTOR, LC3, and p62 mRNA expression levels. In conclusion, the TLR4/mTOR pathway as a mechanism through which chronic Cr and Ni co-exposure induce liver inflammation and autophagy in mice, and there was an antagonistic effect between Cr and Ni. The above results provided a theoretical basis for understanding the underlying processes.


Asunto(s)
Autofagia , Cromo , Inflamación , Hígado , FN-kappa B , Níquel , Transducción de Señal , Receptor Toll-Like 4 , Animales , Femenino , Ratones , Inflamación/inducido químicamente , Interleucina-6/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Mensajero , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cromo/metabolismo , Cromo/toxicidad , Níquel/metabolismo , Níquel/toxicidad
17.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38407183

RESUMEN

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Femenino , Cadmio/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Monitoreo del Ambiente , Método de Montecarlo , Estudios Transversales , Plomo/análisis , Uñas/química , Metales Pesados/toxicidad , Metales Pesados/análisis , Cromo/toxicidad , Níquel/toxicidad , Manganeso , Medición de Riesgo , China
18.
BMC Plant Biol ; 24(1): 125, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38373884

RESUMEN

BACKGROUND: Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). RESULTS: The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. CONCLUSIONS: Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress.


Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Triticum/genética , Níquel/toxicidad , Níquel/metabolismo , Fosfatos/metabolismo , ARN Ribosómico 16S/genética , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Zinc/metabolismo , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/metabolismo
19.
Environ Int ; 184: 108477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340406

RESUMEN

Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.


Asunto(s)
Craneosinostosis , Sistema de Señalización de MAP Quinasas , Femenino , Embarazo , Ratones , Humanos , Animales , Sistema de Señalización de MAP Quinasas/fisiología , Níquel/toxicidad , Osteogénesis , Craneosinostosis/genética , Transducción de Señal , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos
20.
J Hazard Mater ; 466: 133578, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306837

RESUMEN

Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Níquel/toxicidad , Antioxidantes/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Poaceae/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Mecanismos de Defensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA