Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 42(23): 4607-4618, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35504726

RESUMEN

Ubiquitin-specific protease 2 (USP2) participates in glucose metabolism in peripheral tissues such as the liver and skeletal muscles. However, the glucoregulatory role of USP2 in the CNS is not well known. In this study, we focus on USP2 in the ventromedial hypothalamus (VMH), which has dominant control over systemic glucose homeostasis. ISH, using a Usp2-specific probe, showed that Usp2 mRNA is present in VMH neurons, as well as other glucoregulatory nuclei, in the hypothalamus of male mice. Administration of a USP2-selective inhibitor ML364 (20 ng/head), into the VMH elicited a rapid increase in the circulating glucose level in male mice, suggesting USP2 has a suppressive role on glucose mobilization. ML364 treatment also increased serum norepinephrine concentration, whereas it negligibly affected serum levels of insulin and corticosterone. ML364 perturbated mitochondrial oxidative phosphorylation in neural SH-SY5Y cells and subsequently promoted the phosphorylation of AMP-activated protein kinase (AMPK). Consistent with these findings, hypothalamic ML364 treatment stimulated AMPKα phosphorylation in the VMH. Inhibition of hypothalamic AMPK prevented ML364 from increasing serum norepinephrine and blood glucose. Removal of ROS restored the ML364-evoked mitochondrial dysfunction in SH-SY5Y cells and impeded the ML364-induced hypothalamic AMPKα phosphorylation as well as prevented the elevation of serum norepinephrine and blood glucose levels in male mice. These results indicate hypothalamic USP2 attenuates perturbations in blood glucose levels by modifying the ROS-AMPK-sympathetic nerve axis.SIGNIFICANCE STATEMENT Under normal conditions (excluding hyperglycemia or hypoglycemia), blood glucose levels are maintained at a constant level. In this study, we used a mouse model to identify a hypothalamic protease controlling blood glucose levels. Pharmacological inhibition of USP2 in the VMH caused a deviation in blood glucose levels under a nonstressed condition, indicating that USP2 determines the set point of the blood glucose level. Modification of sympathetic nervous activity accounts for the USP2-mediated glucoregulation. Mechanistically, USP2 mitigates the accumulation of ROS in the VMH, resulting in attenuation of the phosphorylation of AMPK. Based on these findings, we uncovered a novel glucoregulatory axis consisting of hypothalamic USP2, ROS, AMPK, and the sympathetic nervous system.


Asunto(s)
Glucemia , Neuroblastoma , Sistema Nervioso Simpático , Ubiquitina Tiolesterasa , Núcleo Hipotalámico Ventromedial , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucemia/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Ratones , Norepinefrina/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Sistema Nervioso Simpático/enzimología , Sistema Nervioso Simpático/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/metabolismo
2.
Front Endocrinol (Lausanne) ; 11: 578830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071984

RESUMEN

Obesity has become a global health issue, but effective therapies remain very limited. Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat, thereby representing a promising target to counteract obesity. Notably, the regulation of thermogenesis is tightly orchestrated by complex neuronal networks, especially those in the hypothalamus. Recent evidence highlights the importance of adenosine monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1, leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to inhibit AMPK, which subsequently increases thermogenesis through the activation of the sympathetic nervous system (SNS). In this review, we summarize the critical role of AMPK within the VMH in the control of energy balance, focusing on its contribution to thermogenesis and the associated mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Termogénesis , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Humanos
3.
Endocrinology ; 161(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32067028

RESUMEN

Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.


Asunto(s)
Hormona Luteinizante/sangre , Óxido Nítrico/metabolismo , Ovulación , Ovinos/sangre , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Femenino , Óxido Nítrico Sintasa de Tipo I/metabolismo , Somatostatina/metabolismo
4.
Diabetes ; 65(10): 2920-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27422385

RESUMEN

Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic ß-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice). Compared with control littermates, Sf1Gck(-/-) mice displayed increased white fat mass and adipocyte size, reduced lean mass, impaired hypoglycemia-induced glucagon secretion, and a lack of parasympathetic and sympathetic nerve activation by neuroglucopenia. However, these phenotypes were observed only in female mice. To determine whether Gck was required for glucose sensing by Sf1 neurons, we performed whole-cell patch clamp analysis of brain slices from control and Sf1Gck(-/-) mice. Absence of Gck expression did not prevent the glucose responsiveness of glucose-excited or glucose-inhibited Sf1 neurons in either sex. Thus Gck in the VMN plays a sex-specific role in the glucose-dependent control of autonomic nervous activity; this is, however, unrelated to the control of the firing activity of classical glucose-responsive neurons.


Asunto(s)
Glucoquinasa/metabolismo , Hipotálamo/enzimología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Femenino , Glucagón/metabolismo , Glucoquinasa/genética , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Mutantes , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/metabolismo
5.
Diabetologia ; 58(4): 749-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25403481

RESUMEN

AIMS/HYPOTHESIS: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an important role in glucose-induced signalling and glucose homeostasis. METHODS: We used pharmacological and genetic approaches in beta cells to determine secretion and calcium metabolism. Furthermore, Adcy8 knockout mice were characterised. RESULTS: In clonal beta cells, inhibitors of adenylyl cyclases or their downstream targets reduced the glucose-induced increase in cytosolic calcium and insulin secretion. This was reproduced by knock-down of ADCY8, but not of ADCY1. These agents also inhibited glucose-induced increase in cytosolic calcium and electrical activity in primary beta cells and similar effects were observed after ADCY8 knock-down. Moreover, insulin secretion was diminished in islets from Adcy8 knockout mice. These mice were glucose intolerant after oral or intraperitoneal administration of glucose whereas their levels of glucagon-like peptide-1 remained unaltered. Finally, we knocked down ADCY8 in the ventromedial hypothalamus to evaluate the need for ADCY8 in the central regulation of glucose homeostasis. Whereas mice fed a standard diet had normal glucose levels, high-fat diet exacerbated glucose intolerance and knock-down mice were incapable of raising their plasma insulin levels. Finally we confirmed that ADCY8 is expressed in human islets. CONCLUSIONS/INTERPRETATIONS: Collectively, our findings demonstrate that ADCY8 is required for the physiological activation of glucose-induced signalling pathways in beta cells, for glucose tolerance and for hypothalamic adaptation to a high-fat diet via regulation of islet insulin secretion.


Asunto(s)
Adenilil Ciclasas/metabolismo , Glucemia/metabolismo , Células Secretoras de Insulina/enzimología , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Genotipo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/enzimología , Homeostasis , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Núcleo Hipotalámico Ventromedial/enzimología
6.
Proc Natl Acad Sci U S A ; 111(32): 11876-81, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071172

RESUMEN

Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.


Asunto(s)
Glucagón/metabolismo , Hipotálamo/enzimología , Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Glucemia/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/etiología , Hipotálamo/fisiología , Indoles/farmacología , Secreción de Insulina , Canales Iónicos/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Páncreas/metabolismo , Fosforilación , Prolil Oligopeptidasas , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/farmacología , Tiazolidinas/farmacología , Proteína Desacopladora 1 , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiología
7.
Histochem Cell Biol ; 141(5): 543-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24346263

RESUMEN

The hypothalamus and the endocannabinoid system are important players in the regulation of energy homeostasis. In a previous study, we described the ultrastructural distribution of CB1 receptors in GABAergic and glutamatergic synaptic terminals of the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH). However, the specific localization of the enzymes responsible for the synthesis of the two main endocannabinoids in the hypothalamus is not known. The objective of this study was to investigate the precise subcellular distribution of N-arachidonoylphospatidylethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGL-α) in the dorsomedial VMH of wild-type mice by a high resolution immunogold electron microscopy technique. Knock-out mice for each enzyme were used to validate the specificity of the antibodies. NAPE-PLD was localized presynaptically and postsynaptically but showed a preferential distribution in dendrites. DAGL-α was mostly postsynaptic in dendrites and dendritic spines. These anatomical results contribute to a better understanding of the endocannabinoid modulation in the VMH nucleus. Furthermore, they support the idea that the dorsomedial VMH displays the necessary machinery for the endocannabinoid-mediated modulation of synaptic transmission of brain circuitries that regulate important hypothalamic functions such as feeding behaviors.


Asunto(s)
Inmunohistoquímica , Lipoproteína Lipasa/análisis , Fosfolipasa D/análisis , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Femenino , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Fosfolipasa D/metabolismo , Adhesión del Tejido , Núcleo Hipotalámico Ventromedial/ultraestructura
8.
Int J Neuropsychopharmacol ; 17(1): 91-104, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23919889

RESUMEN

Rats are used as animal models in the study of antipsychotic-induced metabolic adverse effects, with oral drug administration yielding hyperphagia, weight gain and, in some cases, lipogenic effects. However, the rapid half-life of these drugs in rats, in combination with development of drug tolerance after a few weeks of treatment, has limited the validity of the model. In order to prevent fluctuating drug serum concentrations seen with daily repeated administrations, we injected female rats with a single intramuscular dose of long-acting olanzapine formulation. The olanzapine depot injection yielded plasma olanzapine concentrations in the range of those achieved in patients, and induced changes in metabolic parameters similar to those previously observed with oral administration, including increased food intake, weight gain and elevated plasma triglycerides. Moreover, the sensitivity to olanzapine was maintained beyond the 2-3 wk of weight gain observed with oral administration. In a separate olanzapine depot experiment, we aimed to clarify the role of hypothalamic AMP-activated protein kinase (AMPK) in olanzapine-induced weight gain, which has been subject to debate. Adenovirus-mediated inhibition of AMPK was performed in the arcuate (ARC) or the ventromedial hypothalamic (VMH) nuclei in female rats, with subsequent injection of olanzapine depot solution. Inhibition of AMPK in the ARC, but not in the VMH, attenuated the weight-inducing effect of olanzapine, suggesting an important role for ARC-specific AMPK activation in mediating the orexigenic potential of olanzapine. Taken together, olanzapine depot formulation provides an improved mode of drug administration, preventing fluctuating plasma concentrations, reducing handling stress and opening up possibilities to perform complex mechanistic studies.


Asunto(s)
Antipsicóticos/efectos adversos , Benzodiazepinas/efectos adversos , Enfermedades Metabólicas/inducido químicamente , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Tejido Adiposo/metabolismo , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/sangre , Núcleo Arqueado del Hipotálamo/enzimología , Benzodiazepinas/administración & dosificación , Benzodiazepinas/sangre , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hígado/metabolismo , Enfermedades Metabólicas/sangre , Olanzapina , Ratas , Triglicéridos/sangre , Núcleo Hipotalámico Ventromedial/enzimología , Aumento de Peso/efectos de los fármacos
9.
Am J Physiol Endocrinol Metab ; 305(3): E336-47, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23736540

RESUMEN

Carnitine palmitoyltransferase-1 (CPT-1) liver isoform, or CPT-1a, is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced an orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, arcuate nucleus (Arc) overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN CPT-1 activity was altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. All together, CPT-1a in the hypothalamic VMN appears to play an important role in central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Ingestión de Alimentos/fisiología , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiología , Acilcoenzima A/metabolismo , Animales , Depresores del Apetito/farmacología , Núcleo Arqueado del Hipotálamo/metabolismo , Western Blotting , Peso Corporal/fisiología , Carnitina/análogos & derivados , Carnitina/metabolismo , Dependovirus , Activación Enzimática/efectos de los fármacos , Compuestos Epoxi/farmacología , Ayuno/fisiología , Vectores Genéticos , Hipoglucemiantes/farmacología , Inyecciones Intraventriculares , Masculino , Malonil Coenzima A/fisiología , Ratas , Ratas Sprague-Dawley
10.
Neuropeptides ; 46(4): 167-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22672888

RESUMEN

Thimet oligopeptidase (TOP) and prolyl endopeptidase (PEP) are neuropeptidases involved in the hydrolysis of gonadotropin-releasing hormone, a key component of the hypothalamic-pituitary-gonadal axis. GnRH is regulated in part by feedback from steroid hormones such as estradiol. Previously, we demonstrated that TOP levels are down-regulated by estradiol in reproductively-relevant regions of the female rodent brain. The present study supports these findings by showing that TOP enzyme activity, as well as protein levels, in the ventromedial hypothalamic nucleus of female mice is controlled by estradiol. We further demonstrate that PEP levels in this same brain region are down-regulated by estradiol in parallel with those of TOP. These findings provide evidence that these neuropeptidases are part of the fine control of hormone levels in the HPG axis.


Asunto(s)
Estradiol/farmacología , Hipotálamo/enzimología , Metaloendopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Ratones , Ratones Endogámicos C57BL , Prolil Oligopeptidasas , Esteroides/metabolismo
11.
J Neuroendocrinol ; 24(9): 1213-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22487458

RESUMEN

Neural steroids, as well as the enzymes that produce these hormones, are important for sexual differentiation of the brain during development. Aromatase converts testosterone into oestradiol. 5α-reductase converts testosterone to 5α-dihydrotestosterone and occurs in two isozymes: type 1 (5αR1) and type 2 (5αR2). Each of these enzymes is present in the developing brain in many species, although no work has been carried out examining the expression of all three enzymes in non-avian reptiles with genetic sex determination. In the present study, we evaluated mRNA expression of neural aromatase, 5αR1 and 5αR2, on the day of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymes throughout the brain and the quantification of mRNA expression in three regions that control adult sexual behaviours: the preoptic area (POA) and ventromedial amygdala (AMY), which are involved in male displays, as well as the ventromedial hypothalamus, which regulates female receptivity. Younger animals had a greater number (POA) and density (AMY) of 5αR1 mRNA expressing cells. We detected no effects of sex or age on aromatase or 5αR2. In comparison with data from adults, the present results support the idea that the green anole forebrain has not completely differentiated by 50 days after hatching and that 5αR1 may play a role in the early development of regions important for masculine function.


Asunto(s)
Amígdala del Cerebelo/enzimología , Aromatasa/biosíntesis , Encéfalo/crecimiento & desarrollo , Colestenona 5 alfa-Reductasa/biosíntesis , Lagartos/crecimiento & desarrollo , Área Preóptica/enzimología , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Encéfalo/enzimología , Recuento de Células/métodos , Recuento de Células/estadística & datos numéricos , Femenino , Isoenzimas/biosíntesis , Lagartos/metabolismo , Masculino , Caracteres Sexuales
12.
Mol Neurobiol ; 45(2): 348-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311299

RESUMEN

The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Conducta Alimentaria/fisiología , Péptido 1 Similar al Glucagón/fisiología , Glucosa/metabolismo , Hipotálamo/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Animales , Conducta Alimentaria/efectos de los fármacos , Péptido 1 Similar al Glucagón/genética , Glucosa/biosíntesis , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/enzimología , Área Hipotalámica Lateral/metabolismo , Hipotálamo/citología , Hipotálamo/enzimología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Ratas Zucker , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/genética , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/metabolismo
13.
Antioxid Redox Signal ; 17(3): 433-44, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22229526

RESUMEN

AIMS: Hypothalamic mitochondrial reactive oxygen species (mROS)-mediated signaling has been recently shown to be involved in the regulation of energy homeostasis. However, the upstream signals that control this mechanism have not yet been determined. Here, we hypothesize that glucose-induced mitochondrial fission plays a significant role in mROS-dependent hypothalamic glucose sensing. RESULTS: Glucose-triggered translocation of the fission protein dynamin-related protein 1 (DRP1) to mitochondria was first investigated in vivo in hypothalamus. Thus, we show that intracarotid glucose injection induces the recruitment of DRP1 to VMH mitochondria in vivo. Then, expression was transiently knocked down by intra-ventromedial hypothalamus (VMH) DRP1 siRNA (siDRP1) injection. 72 h post siRNA injection, brain intracarotid glucose induced insulin secretion, and VMH glucose infusion-induced refeeding decrease were measured, as well as mROS production. The SiDRP1 rats decreased mROS and impaired intracarotid glucose injection-induced insulin secretion. In addition, the VMH glucose infusion-induced refeeding decrease was lost in siDRP1 rats. Finally, mitochondrial function was evaluated by oxygen consumption measurements after DRP1 knock down. Although hypothalamic mitochondrial respiration was not modified in the resting state, substrate-driven respiration was impaired in siDRP1 rats and associated with an alteration of the coupling mechanism. INNOVATION AND CONCLUSION: Collectively, our results suggest that glucose-induced DRP1-dependent mitochondrial fission is an upstream regulator for mROS signaling, and consequently, a key mechanism in hypothalamic glucose sensing. Thus, for the first time, we demonstrate the involvement of DRP1 in physiological regulation of brain glucose-induced insulin secretion and food intake inhibition. Such involvement implies DRP1-dependent mROS production.


Asunto(s)
Núcleo Arqueado del Hipotálamo/enzimología , Dinaminas/metabolismo , Glucosa/metabolismo , Mitocondrias/enzimología , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/ultraestructura , Dinaminas/genética , Fuentes Generadoras de Energía , Técnicas de Silenciamiento del Gen , Glucosa/fisiología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/enzimología , Consumo de Oxígeno , Transporte de Proteínas , Interferencia de ARN , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/ultraestructura
14.
Endocrinology ; 152(11): 4242-51, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21878510

RESUMEN

The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.


Asunto(s)
Aromatasa/metabolismo , Coturnix , Área Preóptica/enzimología , Codorniz/metabolismo , Estrés Fisiológico/fisiología , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Corticosterona/sangre , Femenino , Masculino , Restricción Física , Factores Sexuales , Conducta Sexual Animal/fisiología , Testosterona/sangre
15.
Brain Behav Evol ; 76(3-4): 279-88, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21116109

RESUMEN

The 5α-reductase (5αR) enzyme converts testosterone to 5α-dihydrotestosterone. This local metabolism within the brain is important for the full expression of male sexual behavior in many species, including green anole lizards. Two isozymes of 5αR exist and little is known about their specific distributions. We conducted in situ hybridization for both isozymes in intact male and female green anole brains during the breeding (BS) and non-breeding (NBS) seasons. 5αR1 mRNA was only detected in the brainstem, while 5αR2 was expressed in specific areas throughout the brain. As our primary interest was evaluating the potential role of 5αR in forebrain regulation of reproductive behavior, we quantified 5αR2 expression in the preoptic area, amygdala (AMY), and ventromedial hypothalamus (VMH). More 5αR2 cells were detected during the NBS than BS in the AMY, and the density of these cells was greater in females than males. In the VMH, the right side contained more 5αR2 cells than the left, an effect driven by a lateralized increase in the NBS. These data expand understanding of the distribution and potential roles of both isozymes in the adult brain, and differences in expression patterns between mammals and birds suggest that they may have been co-opted for different functions later in evolution.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Lagartos/metabolismo , Prosencéfalo/enzimología , Conducta Sexual Animal/fisiología , Amígdala del Cerebelo/enzimología , Animales , Femenino , Lateralidad Funcional , Hibridación in Situ , Isoenzimas , Masculino , Área Preóptica/enzimología , Estaciones del Año , Factores Sexuales , Distribución Tisular , Núcleo Hipotalámico Ventromedial/enzimología
16.
Cell Metab ; 12(1): 88-95, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20620998

RESUMEN

Phosphatidyl inositol 3-kinase (PI3K) signaling in the hypothalamus has been implicated in the regulation of energy homeostasis, but the critical brain sites where this intracellular signal integrates various metabolic cues to regulate food intake and energy expenditure are unknown. Here, we show that mice with reduced PI3K activity in the ventromedial hypothalamic nucleus (VMH) are more sensitive to high-fat diet-induced obesity due to reduced energy expenditure. In addition, inhibition of PI3K in the VMH impaired the ability to alter energy expenditure in response to acute high-fat diet feeding and food deprivation. Furthermore, the acute anorexigenic effects induced by exogenous leptin were blunted in the mutant mice. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in the regulation of energy expenditure.


Asunto(s)
Metabolismo Energético , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Depresores del Apetito/farmacología , Grasas de la Dieta/farmacología , Homeostasis , Leptina/farmacología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3
17.
Neuroreport ; 21(5): 376-80, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20147858

RESUMEN

It was shown earlier that, in Japanese quail the mechanism controlling the induction by testosterone of aromatase activity develops between embryonic days 10 and 14. The cellular processes underlying this activation have, however, not been investigated in detail. Here, we demonstrate that the increase in aromatase activity observed in neonates treated with testosterone propionate between postnatal days 1 and 3 results from the recruitment of additional populations of aromatase-immunoreactive cells that were not expressing the enzyme at detectable levels before. This recruitment concerns all brain nuclei normally expressing the enzyme even if it is more prominent in the ventromedial hypothalamus than in other nuclei.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Testosterona/metabolismo , Análisis de Varianza , Animales , Encéfalo/metabolismo , Recuento de Células , Coturnix , Femenino , Inmunohistoquímica , Masculino , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/crecimiento & desarrollo , Núcleo Hipotalámico Ventromedial/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R655-64, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19535676

RESUMEN

We assessed the mechanisms by which specialized hypothalamic ventromedial nucleus (VMN) neurons utilize both glucose and long-chain fatty acids as signaling molecules to alter their activity as a potential means of regulating energy homeostasis. Fura-2 calcium (Ca(2+)) and membrane potential dye imaging, together with pharmacological agents, were used to assess the mechanisms by which oleic acid (OA) alters the activity of dissociated VMN neurons from 3- to 4-wk-old rats. OA excited up to 43% and inhibited up to 29% of all VMN neurons independently of glucose concentrations. In those neurons excited by both 2.5 mM glucose and OA, OA had a concentration-dependent effective excitatory concentration (EC(50)) of 13.1 nM. Neurons inhibited by both 2.5 mM glucose and OA had an effective inhibitory concentration (IC(50)) of 93 nM. At 0.5 mM glucose, OA had markedly different effects on these same neurons. Inhibition of carnitine palmitoyltransferase, reactive oxygen species formation, long-chain acetyl-CoA synthetase and ATP-sensitive K(+) channel activity or activation of uncoupling protein 2 (UCP2) accounted for only approximately 20% of OA's excitatory effects and approximately 40% of its inhibitory effects. Inhibition of CD36, a fatty acid transporter that can alter cell function independently of intracellular fatty acid metabolism, reduced the effects of OA by up to 45%. Thus OA affects VMN neuronal activity through multiple pathways. In glucosensing neurons, its effects are glucose dependent. This glucose-OA interaction provides a potential mechanism whereby such "metabolic sensing" neurons can respond to differences in the metabolic states associated with fasting and feeding.


Asunto(s)
Señalización del Calcio , Metabolismo Energético , Glucosa/metabolismo , Neuronas/metabolismo , Ácido Oléico/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Antígenos CD36/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Homeostasis , Canales Iónicos/metabolismo , Canales KATP/antagonistas & inhibidores , Canales KATP/metabolismo , Masculino , Potenciales de la Membrana , Microscopía Fluorescente , Proteínas Mitocondriales/metabolismo , Inhibición Neural , Neuronas/efectos de los fármacos , Neuronas/enzimología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Proteína Desacopladora 2 , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/enzimología
19.
Am J Physiol Regul Integr Comp Physiol ; 296(6): R1702-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19357294

RESUMEN

In nondiabetic rodents, AMP-activated protein kinase (AMPK) plays a role in the glucose-sensing mechanism used by the ventromedial hypothalamus (VMH), a key brain region involved in the detection of hypoglycemia. However, AMPK is regulated by both hyper- and hypoglycemia, so whether AMPK plays a similar role in type 1 diabetes (T1DM) is unknown. To address this issue, we used four groups of chronically catheterized male diabetic BB rats, a rodent model of autoimmune T1DM with established insulin-requiring diabetes (40 +/- 4 pmol/l basal c-peptide). Two groups were subjected to 3 days of recurrent hypoglycemia (RH), while the other two groups were kept hyperglycemic [chronic hyperglycemia (CH)]. All groups subsequently underwent hyperinsulinemic hypoglycemic clamp studies on day 4 in conjunction with VMH microinjection with either saline (control) or AICAR (5-aminoimidazole-4-carboxamide) to activate AMPK. Compared with controls, local VMH application of AICAR during hypoglycemia amplified both glucagon [means +/- SE, area under the curve over time (AUC/t) 144 +/- 43 vs. 50 +/- 11 ng.l(-1).min(-1); P < 0.05] and epinephrine [4.27 +/- 0.96 vs. 1.06 +/- 0.26 nmol.l(-1).min(-1); P < 0.05] responses in RH-BB rats, and amplified the glucagon [151 +/- 22 vs. 85 +/- 22 ng.l(-1).min(-1); P < 0.05] response in CH-BB rats. We conclude that VMH AMPK also plays a role in glucose-sensing during hypoglycemia in a rodent model of T1DM. Moreover, our data suggest that it may be possible to partially restore the hypoglycemia-specific glucagon secretory defect characteristic of T1DM through manipulation of VMH AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Activadores de Enzimas/farmacología , Hipoglucemia/enzimología , Hipoglucemiantes/farmacología , Insulina/farmacología , Ribonucleótidos/farmacología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/farmacología , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 1/enzimología , Modelos Animales de Enfermedad , Activación Enzimática , Activadores de Enzimas/administración & dosificación , Epinefrina/sangre , Glucagón/sangre , Hipoglucemiantes/administración & dosificación , Insulina/sangre , Masculino , Microinyecciones , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Endogámicas BB , Ratas Sprague-Dawley , Ribonucleótidos/administración & dosificación , Factores de Tiempo , Núcleo Hipotalámico Ventromedial/enzimología
20.
Mol Endocrinol ; 22(8): 1950-61, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18511494

RESUMEN

The nuclear receptor steroidogenic factor 1 (SF-1) plays essential roles in the development and function of the ventromedial hypothalamic nucleus (VMH). Considerable evidence links the VMH and SF-1 with the regulation of energy homeostasis. Here, we demonstrate that SF-1 colocalizes in VMH neurons with the cannabinoid receptor 1 (CB1R) and that a specific CB1R agonist modulates electrical activity of SF-1 neurons in hypothalamic slice preparations. We further show that SF-1 directly regulates CB1R gene expression via a SF-1-responsive element at -101 in its 5'-flanking region. Finally, we show that knockout mice with selective inactivation of SF-1 in the brain have decreased expression of CB1R in the region of the VMH and exhibit a blunted response to systemically administered CB1R agonists. These studies suggest that SF-1 directly regulates the expression of CB1R, which has been implicated in the regulation of energy homeostasis and anxiety-like behavior.


Asunto(s)
Regulación de la Expresión Génica , Receptor Cannabinoide CB1/genética , Factor Esteroidogénico 1/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ácidos Araquidónicos/administración & dosificación , Ácidos Araquidónicos/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular , Células Cultivadas , Oscuridad , Electrofisiología , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Elementos de Respuesta , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA