RESUMEN
The locus coeruleus (LC), nucleus tractus solitarius (NTS), and retrotrapezoid nucleus (RTN) are critical chemosensory regions in the brainstem. In the LC, acid-sensing ion channels and proton pumps serve as H+ sensors and facilitate the transition from non-rapid eye movement (NREM) to rapid eye movement (REM) sleep. Interestingly, the potassium inward rectifier (KIR) channels in the LC, NTS, and RTN also act as H+-sensors and are a primary target for improving sleep in obstructive sleep apnea and Rett syndrome patients. However, the role of Kir channels in NREM to REM sleep transition for H+ homeostasis is not known. Male Wistar rats were surgically prepared for chronic sleep-wake recording and drug delivery into the LC, NTS, and RTN. In different animal cohorts, microinjections of the Kir channel inhibitor, barium chloride (BaCl2), at concentrations of 1 mM (low dose) and 2 mM (high dose) in the LC and RTN significantly increased wakefulness and decreased NREM sleep. However, BaCl2 microinjection into the LC notably reduced REM sleep, whereas it didn't change in the RTN-injected group. Interestingly, BaCl2 microinjections into the NTS significantly decreased wakefulness and increased the percent amount of NREM and REM sleep. Additionally, with the infusion of BaCl2 into the NTS, the mean REM sleep episode numbers significantly increased, but the length of the REM sleep episode didn't change. These findings suggest that the Kir channels in the NTS, but not in the LC and RTN, modulate state transition from NREM to REM sleep.
Asunto(s)
Homeostasis , Ratas Wistar , Sueño REM , Núcleo Solitario , Animales , Sueño REM/fisiología , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Masculino , Ratas , Vigilia/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Compuestos de Bario/farmacología , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiología , Locus Coeruleus/efectos de los fármacos , Cloruros/metabolismoRESUMEN
BACKGROUND: The medullary nucleus of solitary tract (NTS) and its afferents of vagus nerve have long been investigated in regulation of cortical activity and sleep promotion. However, the underlying neural circuit by which the NTS regulates electroencephalogram (EEG) and sleep remain unclear. As the NTS has a strong projection to the pontine arousal site, the parabrachial nucleus (PB), we proposed the NTS via the pontine parabrachial nucleus (PB) regulates cortical activity and sleep. METHODS: We bilaterally and directly stimulated the NTS neurons by chemogenetic approach and NTS terminals in the PB by optogenetic approach and examined changes in EEG and sleep in rats. RESULTS: Opto- and chemo-stimulation of the NTS and NTS-PB pathway altered neither sleep amounts nor patterns; however, both stimulations consistently increased EEG delta (0.5-4.0 Hz) EEG power during non-rapid-eye-movement (NREM) sleep and alpha-beta (10-30 Hz) EEG power during wake and REM sleep. CONCLUSION: Our results indicate that the NTS via its projections to the PB synchronizes low frequency EEG during NREM sleep and high frequency EEG during wake and REM sleep. This pathway may serve the neural foundation for the vagus nerve stimulation (VNS) treating cortical disorders.
Asunto(s)
Electroencefalografía , Núcleos Parabraquiales , Núcleo Solitario , Vigilia , Animales , Núcleos Parabraquiales/fisiología , Núcleo Solitario/fisiología , Ratas , Vigilia/fisiología , Masculino , Ratas Sprague-Dawley , Sueño/fisiología , Sueño REM/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , OptogenéticaRESUMEN
INTRODUCTION: Vagus nerve stimulation (VNS) is clinically useful for treating epilepsy, depression, and chronic pain. Currently, cervical VNS (cVNS) treatment is well-established, while auricular VNS (aVNS) is under development. Vagal stimulation regulates functions in diverse brain regions; therefore, it is critical to better understand how electrically-evoked vagal inputs following cVNS and aVNS engage with different brain regions. OBJECTIVE: As vagus inputs are predominantly transmitted to the nucleus of tractus solitarius (NTS), we directly compared the activation of NTS neurons by cVNS or aVNS and the brain regions directly projected by the activated NTS neurons in mice. METHODS: We adopted the targeted recombination in active populations method, which allows for the activity-dependent, tamoxifen-inducible expression of mCherry-a reporter protein-in neurons specifically associated with cVNS or aVNS. RESULTS: cVNS and aVNS induced comparable bilateral mCherry expressions in neurons within the NTS, especially in its caudal section (cNTS). However, the numbers of mCherry-expressing neurons within different subdivisions of cNTS was distinctive. In both cVNS and aVNS, anterogradely labeled mCherry-expressing axonal terminals were similarly observed across different areas of the forebrain, midbrain, and hindbrain. These terminals were enriched in the rostral ventromedial medulla, parabrachial nucleus, periaqueductal gray, thalamic nuclei, central amygdala, and the hypothalamus. Sex difference of cVNS- and aVNS-induced labeling of NTS neurons was modest. CONCLUSION: The central projections of mCherry-expressing cNTS terminals are comparable between aVNS and cVNS, suggesting that cVNS and aVNS activate distinct but largely overlapping projections into the brain through the cNTS.
Asunto(s)
Neuronas , Núcleo Solitario , Estimulación del Nervio Vago , Nervio Vago , Animales , Núcleo Solitario/fisiología , Núcleo Solitario/metabolismo , Núcleo Solitario/citología , Ratones , Masculino , Femenino , Neuronas/fisiología , Neuronas/metabolismo , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Ratones Endogámicos C57BLRESUMEN
Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
Asunto(s)
Alérgenos , Tronco Encefálico , Hiperreactividad Bronquial , Dopamina beta-Hidroxilasa , Pulmón , Neuronas , Animales , Femenino , Masculino , Ratones , Alérgenos/inmunología , Asma/inmunología , Asma/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Interleucina-4/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Mastocitos/inmunología , Neuronas/enzimología , Neuronas/fisiología , Norepinefrina/antagonistas & inhibidores , Norepinefrina/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Ganglios Autónomos/citología , Dopamina beta-Hidroxilasa/metabolismoRESUMEN
Coughing is a respiratory behavior that plays a crucial role in protecting the respiratory system. Here we show that the nucleus of the solitary tract (NTS) in mice contains heterogenous neuronal populations that differentially control breathing. Within these subtypes, activation of tachykinin 1 (Tac1)-expressing neurons triggers specific respiratory behaviors that, as revealed by our detailed characterization, are cough-like behaviors. Chemogenetic silencing or genetic ablation of Tac1 neurons inhibits cough-like behaviors induced by tussive challenges. These Tac1 neurons receive synaptic inputs from the bronchopulmonary chemosensory and mechanosensory neurons in the vagal ganglion and coordinate medullary regions to control distinct aspects of cough-like defensive behaviors. We propose that these Tac1 neurons in the NTS are a key component of the airway-vagal-brain neural circuit that controls cough-like defensive behaviors in mice and that they coordinate the downstream modular circuits to elicit the sequential motor pattern of forceful expiratory responses.
Asunto(s)
Tronco Encefálico , Tos , Neuronas , Taquicininas , Nervio Vago , Animales , Tos/fisiopatología , Nervio Vago/fisiología , Ratones , Tronco Encefálico/fisiología , Taquicininas/metabolismo , Taquicininas/genética , Neuronas/fisiología , Núcleo Solitario/fisiología , Masculino , Interocepción/fisiología , Vías Nerviosas/fisiología , Ratones Transgénicos , Ratones Endogámicos C57BL , Conducta Animal/fisiologíaRESUMEN
Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.
Asunto(s)
Tronco Encefálico , Neuronas , Ratas Sprague-Dawley , Núcleo Solitario , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Masculino , Ratas , Tronco Encefálico/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Neuronas/fisiología , Núcleo Solitario/fisiología , Nervio Vago/fisiologíaRESUMEN
BACKGROUND: Traditional pharmacological interventions are well tolerated in the management of elevated blood pressure (BP) for individuals with resistant hypertension. Although neuromodulation has been investigated as an alternative solution, its open-loop (OL) modality cannot follow the patient's physiological state. In fact, neuromodulation for controlling highly fluctuating BP necessitates a closed-loop (CL) stimulation modality based on biomarkers to monitor the patient's continuously varying physiological state. OBJECTIVE: By leveraging its intuitive linkage with BP responses in ongoing efforts aimed at developing a CL system to enhance temporal BP reduction effect, this study proposes a CL neuromodulation modality that controls nucleus tractus solitarius (NTS) activity to effectively reduce BP, thus reflecting continuously varying physiological states. METHOD: While performing neurostimulation targeting the NTS in the rat model, the arterial BP response and neural activity of the NTS were simultaneously measured. To evaluate the temporal BP response effect of CL neurostimulation, OL (constant parameter; 20 Hz, 200 µA) and CL (Initial parameter; 11 Hz, 112 µA) stimulation protocols were performed with stimulation 180 s and rest 600 s, respectively, and examined NTS activity and BP response to the protocols. RESULTS: In-vivo experiments for OL versus CL protocol for direct NTS stimulation in rats demonstrated an enhancement in temporal BP reduction via the CL modulation of NTS activity. CONCLUSION: This study proposes a CL stimulation modality that enhances the effectiveness of BP control using a feedback control algorithm based on neural signals, thereby suggesting a new approach to antihypertensive neuromodulation.
Asunto(s)
Presión Sanguínea , Núcleo Solitario , Animales , Ratas , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Núcleo Solitario/fisiología , Masculino , Ratas Sprague-Dawley , Tronco Encefálico/fisiología , Hipertensión/terapia , Hipertensión/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/instrumentaciónRESUMEN
Angiotensin-II (Ang-II) production is driven by deviations in blood volume and osmolality, and serves the role of regulating blood pressure and fluid intake to maintain cardiovascular and hydromineral homeostasis. These actions are mediated by Ang-II acting on its type 1a receptor (AT1aR) within the central nervous system and periphery. Of relevance, AT1aR are expressed on sensory afferents responsible for conveying cardiovascular information to the nucleus of the solitary tract (NTS). We have previously determined that optical excitation of neurons and vagal afferents within the NTS that express AT1aR (referred to as NTSAT1aR) mimics the perception of increased vascular stretch and induces compensatory responses to restore blood pressure. Here, we test whether NTSAT1aR are also involved in the modulation of water and sodium intake. We directed the light-sensitive excitatory channelrhodopsin-2 (ChR2) or inhibitory halorhodopsin (Halo) to Agtr1a-containing neurons and measured water and sodium chloride (NaCl) intake in the presence and absence of optical stimulation within the NTS during various challenges to fluid homeostasis. Optical perturbation of NTSAT1aR modulates NaCl intake, such that excitation attenuates, whereas inhibition increases intake. This effect is only observed in the water-deprived condition, suggesting that NTSAT1aR are involved in the regulation of sodium intake during an imbalance in both the intracellular and extracellular fluid compartments. Furthermore, optical excitation of NTSAT1aR increases c-Fos expression within oxytocinergic neurons of the paraventricular nucleus of the hypothalamus (PVN), indicating that the regulation of sodium intake by NTSAT1aR may be mediated by oxytocin. Collectively, these results reveal that NTSAT1aR are sufficient and necessary to modulate sodium intake relative to perceived changes in vascular stretch.
Asunto(s)
Neuronas , Receptor de Angiotensina Tipo 1 , Núcleo Solitario , Animales , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Núcleo Solitario/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Ingestión de Líquidos/fisiología , Ingestión de Líquidos/efectos de los fármacos , Neuronas Aferentes/fisiología , Neuronas Aferentes/metabolismo , Optogenética , Cloruro de Sodio/farmacologíaRESUMEN
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
Asunto(s)
Fármacos Antiobesidad , Reacción de Prevención , Receptor del Péptido 1 Similar al Glucagón , Vías Nerviosas , Rombencéfalo , Respuesta de Saciedad , Animales , Femenino , Masculino , Ratones , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/farmacología , Área Postrema/metabolismo , Área Postrema/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Obesidad/metabolismo , Rombencéfalo/citología , Rombencéfalo/efectos de los fármacos , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , AlimentosRESUMEN
Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.
Asunto(s)
Presión Sanguínea , Quimiocinas , Ratas Sprague-Dawley , Núcleo Solitario , Sistema Nervioso Simpático , Animales , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Núcleo Solitario/metabolismo , Masculino , Quimiocinas/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Ratas , Receptores de Quimiocina/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , NADPH Oxidasas/metabolismo , Superóxidos/metabolismoRESUMEN
The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 µg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.
Asunto(s)
Ratones Endogámicos C57BL , Núcleo Accumbens , Núcleo Solitario , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Ratones , Masculino , Ratas , Ratas Sprague-Dawley , Potenciales Postsinápticos Excitadores/fisiología , Colecistoquinina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Transducción de Señal/fisiologíaRESUMEN
We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20â mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1â mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.
Asunto(s)
Hormona Liberadora de Corticotropina , Neuronas , Antagonistas de los Receptores de Orexina , Receptores de Orexina , Orexinas , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Masculino , Hormona Liberadora de Corticotropina/metabolismo , Orexinas/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Núcleo Solitario/efectos de los fármacos , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismo , Hipoxia/metabolismo , Triazoles/farmacología , Azepinas/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiologíaRESUMEN
Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.
Asunto(s)
Hormona Liberadora de Corticotropina , Hipoxia , Neuronas , Oxitocina , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Oxitocina/metabolismo , Hipoxia/fisiopatología , Hipoxia/metabolismo , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratas , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismoRESUMEN
Swallowing is induced by a central pattern generator in the nucleus tractus solitarius (NTS). We aimed to create a medullary slice preparation to elucidate the neural architecture of the central pattern generator of swallowing (Sw-CPG) and record its neural activities. Experiments were conducted on 2-day-old Sprague-Dawley rats (n = 46). The brainstem-spinal cord was transected at the pontomedullary and cervicothoracic junctions; the medulla was sliced transversely at thicknesses of 600, 700, or 800 µm. The rostral end of the slice was 100 µm rostral to the vagus nerve. We recorded hypoglossal nerve activity and electrically stimulated the vagus nerve or microinjected bicuculline methiodide (BIC) into the NTS. The 800-µm slices generated both rhythmic respiratory activity and electrically elicited neural activity. The 700-µm slices generated only respiratory activity, while the 600-µm slices did not generate any neural activity. BIC microinjection into the NTS in 800-µm slices resulted in the typical activity that closely resembled the swallowing activity reported in other experiments. This swallowing-like activity consistently lengthened the respiratory interval. Despite complete inhibition of respiratory activity, weak swallowing-like activity was observed under bath application of a non-NMDA receptor antagonist. Contrastingly, bath application of NMDA receptor antagonists resulted in a complete loss of swallowing-like activity and no change in respiratory activity. These results suggest that the 800-µm medullary slice preparation contains both afferent and efferent neural circuits and pattern generators of swallowing activity. Additionally, NMDA receptors may be necessary for generating swallowing activity. This medullary slice preparation can therefore elucidate Sw-CPG neural networks.
Asunto(s)
Animales Recién Nacidos , Bicuculina , Generadores de Patrones Centrales , Deglución , Nervio Hipogloso , Bulbo Raquídeo , Ratas Sprague-Dawley , Nervio Vago , Animales , Deglución/fisiología , Deglución/efectos de los fármacos , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/efectos de los fármacos , Bicuculina/farmacología , Bicuculina/análogos & derivados , Ratas , Nervio Vago/fisiología , Nervio Vago/efectos de los fármacos , Generadores de Patrones Centrales/fisiología , Generadores de Patrones Centrales/efectos de los fármacos , Nervio Hipogloso/fisiología , Nervio Hipogloso/efectos de los fármacos , Estimulación Eléctrica , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiologíaRESUMEN
Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.
Asunto(s)
Neuronas , Núcleo Solitario , Ratas , Masculino , Animales , Núcleo Solitario/fisiología , Ratas Sprague-Dawley , Neuronas/fisiología , Vagotomía , Nervio Vago/fisiología , Ácido Glutámico/farmacología , Ácido Glutámico/metabolismoRESUMEN
Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH â PVHMC4R input in stress-associated appetite disorders.
Asunto(s)
Núcleo Hipotalámico Paraventricular , Receptor de Melanocortina Tipo 4 , Núcleo Solitario , Estrés Psicológico , Animales , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismo , Masculino , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Ratones TransgénicosRESUMEN
BACKGROUND: Vagus nerve stimulation (VNS) was recently found to inhibit cortical spreading depression (CSD), the underlying mechanism of migraine aura, through activation of the nucleus tractus solitarius (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DRN). The molecular mechanisms underlying the effect of VNS on CSD in these nuclei remain to be explored. We hypothesized that VNS may activate glutamate receptor-mediated tropomyosin kinase B (TrkB) signaling in the NTS, thereby facilitating the noradrenergic and serotonergic neurotransmission to inhibit CSD. METHODS: To investigate the role of TrkB and glutamate receptors in non-invasive VNS efficacy on CSD, a validated KCl-evoked CSD rat model coupled with intra-NTS microinjection of selective antagonists, immunoblot and immunohistochemistry was employed. RESULTS: VNS increased TrkB phosphorylation in the NTS. Inhibition of intra-NTS TrkB abrogated the suppressive effect of VNS on CSD and CSD-induced cortical neuroinflammation. TrkB was found colocalized with glutamate receptors in NTS neurons. Inhibition of glutamate receptors in the NTS abrogated VNS-induced TrkB activation. Moreover, the blockade of TrkB in the NTS attenuated VNS-induced activation of the LC and DRN. CONCLUSIONS: VNS induces the activation of glutamate receptor-mediated TrkB signaling in the NTS, which might modulate serotonergic and norepinephrinergic innervation to the cerebral cortex to inhibit CSD and cortical inflammation.
Asunto(s)
Depresión de Propagación Cortical , Proteínas Quinasas , Estimulación del Nervio Vago , Ratas , Animales , Núcleo Solitario/fisiología , Ácido Glutámico , Nervio Vago/fisiología , Receptores de GlutamatoRESUMEN
Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.
Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Proteína Fluorescente Roja , Ratones , Masculino , Femenino , Animales , Acetato de Desoxicorticosterona/farmacología , Núcleo Solitario/fisiología , Células Receptoras Sensoriales , Presión Sanguínea/fisiología , Fenilefrina/farmacología , Canales IónicosRESUMEN
INTRODUCTION: Previous work showed that increasing the electrical activity of inhibitory neurons in the dorsal vagal complex (DVC) is sufficient to increase whole-body glucose concentration in normoglycemic mice. Here we tested the hypothesis that deactivating GABAergic neurons in the dorsal hindbrain of hyperglycemic mice decreases synaptic inhibition of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) and reduces systemic glucose levels. METHODS: Chemogenetic activation or inactivation of GABAergic neurons in the nucleus tractus solitarius (NTS) was used to assess effects of modulating parasympathetic output on blood glucose concentration in normoglycemic and hyperglycemic mice. Patch-clamp electrophysiology in vitro was used to assess cellular effects of chemogenetic manipulation of NTS GABA neurons. RESULTS: Chemogenetic activation of GABAergic NTS neurons in normoglycemic mice increased their action potential firing, resulting in increased inhibitory synaptic input to DMV motor neurons and elevated blood glucose concentration. Deactivation of GABAergic DVC neurons in normoglycemic mice altered their electrical activity but did not alter systemic glucose levels. Conversely, stimulation of GABAergic DVC neurons in mice that were hyperglycemic subsequent to treatment with streptozotocin changed their electrical activity but did not alter whole-body glucose concentration, while deactivation of this inhibitory circuit significantly decreased circulating glucose concentration. Peripheral administration of a brain impermeant muscarinic acetylcholine receptor antagonist abolished these effects. CONCLUSION: Disinhibiting vagal motor neurons decreases hyperglycemia in a mouse model of type 1 diabetes. This inhibitory brainstem circuit emerges as a key parasympathetic regulator of whole-body glucose homeostasis that undergoes functional plasticity in hyperglycemic conditions.
Asunto(s)
Diabetes Mellitus Tipo 1 , Glucosa , Ratones , Animales , Glucosa/farmacología , Glucemia , Ratones Obesos , Modelos Animales de Enfermedad , Núcleo Solitario/fisiología , Neuronas GABAérgicas/fisiologíaRESUMEN
The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.