Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 750: 135794, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33667599

RESUMEN

A subset of glutamatergic interneurons in the neonatal spinal superficial dorsal horn (SDH) exhibits intrinsic burst-firing (i.e. 'pacemaker' activity), which is tightly regulated by persistent, voltage-gated Na+ channels and classic inward-rectifying K+ (Kir2) channels and downregulated over the course of postnatal development. Ascending lamina I projection neurons targeting the parabrachial nucleus (PB) or periaqueductal gray (PAG) can also display pacemaker activity during early life. However, the degree to which the ionic mechanisms driving pacemaker activity are conserved across different cell types in the spinal dorsal horn, as well as whether the intrinsic bursting is restricted to newborn projection neurons, remains to be elucidated. Using in vitro patch clamp recordings from identified lamina I spinoparabrachial neurons in rat spinal cord slices, here we demonstrate that adolescent projection neurons retain their ability to generate pacemaker activity. In contrast to previous findings in lamina I interneurons, pacemaker projection neurons possessed higher membrane capacitance, lower membrane resistance, and a greater Kir-mediated conductance compared to adjacent spinoparabrachial neurons that lacked intrinsic burst-firing. Nonetheless, as previously seen in interneurons, the bath application of riluzole to block persistent Na+ channels significantly dampened pacemaker activity in projection neurons. Collectively, these results suggest that intrinsic burst-firing in the developing dorsal horn can be generated by multiple combinations of ionic conductances, and highlight the need for further investigation into the mechanisms governing pacemaker activity within the major output neurons of the SDH network.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Animales , Relojes Biológicos , Femenino , Masculino , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/crecimiento & desarrollo , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/crecimiento & desarrollo
2.
Neuroscience ; 339: 502-510, 2016 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-27751963

RESUMEN

Spinal lamina I projection neurons serve as a major conduit by which noxious stimuli detected in the periphery are transmitted to nociceptive circuits in the brain, including the parabrachial nucleus (PB) and the periaqueductal gray (PAG). While neonatal spino-PB neurons are more than twice as likely to exhibit spontaneous activity compared to spino-PAG neurons, the underlying mechanisms remain unclear since nothing is known about the voltage-independent (i.e. 'leak') ion channels expressed by these distinct populations during early life. To begin identifying these key leak conductances, the present study investigated the role of classical inward-rectifying K+ (Kir2) channels in the regulation of intrinsic excitability in neonatal rat spino-PB and spino-PAG neurons. The data demonstrate that a reduction in Kir2-mediated conductance by external BaCl2 significantly enhanced intrinsic membrane excitability in both groups. Similar results were observed in spino-PB neurons following Kir2 channel block with the selective antagonist ML133. In addition, voltage-clamp experiments showed that spino-PB and spino-PAG neurons express similar amounts of Kir2 current during the early postnatal period, suggesting that the differences in the prevalence of spontaneous activity between the two populations are not explained by differential expression of Kir2 channels. Overall, the results indicate that Kir2-mediated conductance tonically dampens the firing of multiple subpopulations of lamina I projection neurons during early life. Therefore, Kir2 channels are positioned to tightly shape the output of the immature spinal nociceptive circuit and thus regulate the ascending flow of nociceptive information to the developing brain, which has important functional implications for pediatric pain.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Asta Dorsal de la Médula Espinal/crecimiento & desarrollo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Bario/metabolismo , Cationes Bivalentes/metabolismo , Femenino , Vértebras Lumbares , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Dolor/metabolismo , Dolor/patología , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/crecimiento & desarrollo , Núcleos Parabraquiales/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
3.
Endocrinology ; 157(1): 245-57, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26505115

RESUMEN

Dmbx1 is a brain-specific homeodomain transcription factor expressed primarily during embryogenesis, and its systemic disruption (Dmbx1(-/-)) in the ICR mouse strain resulted in leanness associated with impaired long-lasting orexigenic effect of agouti-related peptide (AgRP). Because spatial and temporal expression patterns of Dmbx1 change dramatically during embryogenesis, it remains unknown when and where Dmbx1 plays a critical role in energy homeostasis. In the present study, the physiological roles of Dmbx1 were examined by its conditional disruption (Dmbx1(loxP/loxP)) in the C57BL/6 mouse strain. Although Dmbx1 disruption in fetal brain resulted in neonatal lethality, its disruption by synapsin promoter-driven Cre recombinase, which eliminated Dmbx1 expression postnatally, exempted the mice (Syn-Cre;Dmbx1(loxP/loxP) mice) from lethality. Syn-Cre;Dmbx1(loxP/loxP) mice show mild leanness and impaired long-lasting orexigenic action of AgRP, demonstrating the physiological relevance of Dmbx1 in the adult. Visualization of Dmbx1-expressing neurons in adult brain using the mice harboring tamoxifen-inducible Cre recombinase in the Dmbx1 locus (Dmbx1(CreERT2/+) mice) revealed Dmbx1 expression in small numbers of neurons in restricted regions, including the lateral parabrachial nucleus (LPB). Notably, c-Fos expression in LPB was increased at 48 hours after AgRP administration in Dmbx1(loxP/loxP) mice but not in Syn-Cre;Dmbx1(loxP/loxP) mice. These c-Fos-positive neurons in LPB did not coincide with neurons expressing Dmbx1 or melanocortin 4 receptor but did coincide with those expressing calcitonin gene-related peptide. Accordingly, Dmbx1 in the adult LPB is required for the long-lasting orexigenic effect of AgRP via the neural circuitry involving calcitonin gene-related peptide neurons.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Regulación del Apetito , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores de Transcripción Otx/metabolismo , Núcleos Parabraquiales/metabolismo , Proteína Relacionada con Agouti/farmacología , Animales , Depresores del Apetito/farmacología , Regulación del Apetito/efectos de los fármacos , Biomarcadores/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cruzamientos Genéticos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Factores de Transcripción Otx/genética , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/crecimiento & desarrollo , Fragmentos de Péptidos/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tamoxifeno/farmacología
4.
Morfologiia ; 147(1): 9-14, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-25958722

RESUMEN

The aim of this study was to determine the distribution of GABAergic neurons in pneumotaxic center structures (parabrachial complex medial subnucleus and Kölliker-Fuse nucleus) in norm and in deficiency of serotoninergic system during the prenatal period of development in Wistar rats. Reduction of endogenous serotonin levels in fetal rats was achieved by tryptophan hydroxylase inhibition with para-chlorophenylalanine (PCPA), which was administered to female rats on Day 16 of gestation. Material was obtained from the area of the pons from experimental and control (intact) rat pups at early postnatal (Days 5, 10 and 12) and juvenile (Day 20) periods. At each time point, 5-6 animals were studied from both experimental and control groups. To demonstrate GABAergic neurons, antibodies against glutamate decarboxylase (GAD-67), the enzyme involved in its synthesis, were used. The results have shown that Kölliker-Fuse nucleus contained a population of GABAergic neurons at early postnatal period, the size of which was preserved until juvenile age. In parabrachial complex medial subnucleus during the early postnatal period, a small number of GABAergic neurons was detected, which was somewhat increased by juvenile age. Serotonin deficiency in pneumotaxic center structures lead to a reduction of the numbers of GABAergic neurons, GABAergic synapses and their clusters. A reduction of serotonin levels during the prenatal period may cause the disturbances in the inhibitory afferent signaling of the pneumotaxic center nuclei and lead to the changes of local inhibitory GABAergic networks in its nuclei, resulting in the disturbances of the inhibitory processes in the center structures.


Asunto(s)
Tronco Encefálico/ultraestructura , Neuronas GABAérgicas/ultraestructura , Núcleo de Kölliker-Fuse/ultraestructura , Sinapsis/metabolismo , Animales , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Desarrollo Embrionario , Femenino , Neuronas GABAérgicas/metabolismo , Núcleo de Kölliker-Fuse/crecimiento & desarrollo , Núcleo de Kölliker-Fuse/metabolismo , Núcleos Parabraquiales/crecimiento & desarrollo , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/ultraestructura , Ratas , Ratas Wistar , Serotonina/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...