Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 728, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877285

RESUMEN

Benzodiazepines, commonly used for anxiolytics, hinder conditioned fear extinction, and the underlying circuit mechanisms are unclear. Utilizing remimazolam, an ultra-short-acting benzodiazepine, here we reveal its impact on the thalamic nucleus reuniens (RE) and interconnected hippocamposeptal circuits during fear extinction. Systemic or RE-specific administration of remimazolam impedes fear extinction by reducing RE activation through A type GABA receptors. Remimazolam enhances long-range GABAergic inhibition from lateral septum (LS) to RE, underlying the compromised fear extinction. RE projects to ventral hippocampus (vHPC), which in turn sends projections characterized by feed-forward inhibition to the GABAergic neurons of the LS. This is coupled with long-range GABAergic projections from the LS to RE, collectively constituting an overall positive feedback circuit construct that promotes fear extinction. RE-specific remimazolam negates the facilitation of fear extinction by disrupting this circuit. Thus, remimazolam in RE disrupts fear extinction caused by hippocamposeptal intermediation, offering mechanistic insights for the dilemma of combining anxiolytics with extinction-based exposure therapy.


Asunto(s)
Benzodiazepinas , Extinción Psicológica , Miedo , Hipocampo , Núcleos Talámicos de la Línea Media , Miedo/efectos de los fármacos , Animales , Benzodiazepinas/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Hipocampo/metabolismo , Extinción Psicológica/efectos de los fármacos , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Núcleos Talámicos de la Línea Media/metabolismo , Ratas , Ansiolíticos/farmacología , Ratones
2.
Behav Brain Res ; 470: 115066, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38801950

RESUMEN

The nucleus reuniens (RE) of the ventral midline thalamus is a critical node in the communication between the orbitomedial prefrontal cortex (OFC) and the hippocampus (HF). While RE has been shown to directly participate in memory-associated functions through its connections with the medial prefrontal cortex and HF, less is known regarding the role of RE in executive functioning. Here, we examined the involvement of RE and its projections to the orbital cortex (ORB) in attention and behavioral flexibility in male rats using the attentional set shifting task (AST). Rats expressing the hM4Di DREADD receptor in RE were implanted with indwelling cannulas in either RE or the ventromedial ORB to pharmacologically inhibit RE or its projections to the ORB with intracranial infusions of clozapine-N-oxide hydrochloride (CNO). Chemogenetic-induced suppression of RE resulted in impairments in reversal learning and set-shifting. This supports a vital role for RE in behavioral flexibility - or the ability to adapt behavior to changing reward or rule contingencies. Interestingly, CNO suppression of RE projections to the ventromedial ORB produced impairments in rule abstraction - or dissociable effects elicited with direct RE suppression. In summary, the present findings indicate that RE, mediated in part by actions on the ORB, serves a critical role in the flexible use of rules to drive goal directed behavior. The cognitive deficits of various neurological disorders with impaired communication between the HF and OFC, may be partly attributed to alterations of RE -- as an established intermediary between these cortical structures.


Asunto(s)
Atención , Clozapina , Función Ejecutiva , Núcleos Talámicos de la Línea Media , Corteza Prefrontal , Aprendizaje Inverso , Animales , Masculino , Atención/efectos de los fármacos , Atención/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Ratas , Clozapina/farmacología , Clozapina/análogos & derivados , Función Ejecutiva/fisiología , Función Ejecutiva/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Ratas Long-Evans , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología
3.
J Hazard Mater ; 472: 134559, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735189

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disease and approximately one third of patients with PD are estimated to experience depression. Paraquat (PQ) is the most widely used herbicide worldwide and PQ exposure is reported to induce PD with depression. However, the specific brain region and neural networks underlying the etiology of depression in PD, especially in the PQ-induced model, have not yet been elucidated. Here, we report that the VGluT2-positive glutamatergic neurons in the paraventricular thalamic nucleus (PVT) promote depression in the PQ-induced PD mouse model. Our results show that PVTVGluT2 neurons are activated by PQ and their activation increases the susceptibility to depression in PD mice. Conversely, inhibition of PVTVGluT2 neurons reversed the depressive-behavioral changes induced by PQ. Similar to the effects of intervention the soma of PVTVGluT2 neurons, stimulation of their projections into the central amygdaloid nucleus (CeA) also strongly influenced depression in PD mice. PQ induced malfunctioning of the glutamate system and changes in the dendritic and synaptic morphology in the CeA through its role on PVTVGluT2 neuronal activation. In summary, our results demonstrate that PVTVGluT2 neurons are key neuronal subtypes for depression in PQ-induced PD and promote depression processes through the PVTVGluT2-CeA pathway.


Asunto(s)
Núcleos Talámicos de la Línea Media , Neuronas , Paraquat , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Paraquat/toxicidad , Masculino , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Neuronas/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Ratones Endogámicos C57BL , Herbicidas/toxicidad , Ratones , Enfermedad de Parkinson/metabolismo
4.
Anesthesiology ; 141(1): 56-74, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625708

RESUMEN

BACKGROUND: Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. This study aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in the paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHODS: Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how NALCN influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS: Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of the NALCN in the paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of the NALCN in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of the NALCN in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of NALCN knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS: Activity of the NALCN maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice.


Asunto(s)
Anestésicos por Inhalación , Núcleos Talámicos de la Línea Media , Neuronas , Sevoflurano , Animales , Sevoflurano/farmacología , Ratones , Anestésicos por Inhalación/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Masculino , Ratones Endogámicos C57BL , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Canales Iónicos , Proteínas de la Membrana
5.
J Neurochem ; 168(6): 995-1018, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664195

RESUMEN

Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4ß2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.


Asunto(s)
Acetilcolina , Ratones Endogámicos C57BL , Neuronas , Animales , Ratones , Acetilcolina/metabolismo , Acetilcolina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Receptores Colinérgicos/metabolismo , Femenino , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología
6.
Neuropsychopharmacology ; 49(6): 961-973, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38182776

RESUMEN

Distinguishing between cues predicting safety and danger is crucial for survival. Impaired learning of safety cues is a central characteristic of anxiety-related disorders. Despite recent advances in dissecting the neural circuitry underlying the formation and extinction of conditioned fear, the neuronal basis mediating safety learning remains elusive. Here, we showed that safety learning reduces the responses of paraventricular thalamus (PVT) neurons to safety cues, while activation of these neurons controls both the formation and expression of safety memory. Additionally, the PVT preferentially activates prefrontal cortex somatostatin interneurons (SOM-INs), which subsequently inhibit parvalbumin interneurons (PV-INs) to modulate safety memory. Importantly, we demonstrate that acute stress impairs the expression of safety learning, and this impairment can be mitigated when the PVT is inhibited, indicating PVT mediates the stress effect. Altogether, our findings provide insights into the mechanism by which acute stress modulates safety learning.


Asunto(s)
Núcleos Talámicos de la Línea Media , Corteza Prefrontal , Estrés Psicológico , Animales , Estrés Psicológico/fisiopatología , Masculino , Núcleos Talámicos de la Línea Media/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Ratones , Interneuronas/fisiología , Miedo/fisiología , Ratones Endogámicos C57BL , Señales (Psicología) , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Aprendizaje/fisiología
7.
Neurobiol Learn Mem ; 185: 107521, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536525

RESUMEN

Episodic memory is a complex process requiring input from several regions of the brain. Emerging evidence suggests that coordinated activity between the dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) is required for episodic memory consolidation. However, the mechanisms through which the DH and mPFC interact to promote memory consolidation remain poorly understood. A growing body of research suggests that the nucleus reuniens of the thalamus (RE) is one of several structures that facilitate communication between the DH and mPFC during memory and may do so through bidirectional excitatory projections to both regions. Furthermore, recent work from other labs indicates that the RE is necessary for spatial working memory. However, it is not clear to what extent the RE is necessary for memory of object locations. The goal of this study was to determine whether activity in the RE is necessary for spatial memory as measured by the object placement (OP) task in female mice. A kappa-opioid receptor DREADD (KORD) virus was used to inactivate excitatory neurons in the RE pre- or post-training to establish a role for the RE in spatial memory acquisition and consolidation, respectively. RE inactivation prior to, or immediately after, object training blocked OP memory formation relative to chance and to control mice. Moreover, expression of the immediate early gene EGR-1 was reduced in the RE 1 hour after an object training trial, supporting the conclusion that reduced neuronal activity in the RE impairs the formation of object location memories. In summary, the findings of this study support a key role for the RE in spatial memory acquisition and consolidation.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Memoria Espacial/fisiología , Animales , Diterpenos de Tipo Clerodano/farmacología , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Núcleos Talámicos de la Línea Media/anatomía & histología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Corteza Prefrontal/fisiología
8.
Anesth Analg ; 133(3): 781-793, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34403389

RESUMEN

BACKGROUND: Orexin, a neuropeptide derived from the perifornical area of the hypothalamus (PeFLH), promotes the recovery of propofol, isoflurane, and sevoflurane anesthesias, without influencing the induction time. However, whether the orexinergic system also plays a similar role in desflurane anesthesia, which is widely applied in clinical practice owing to its most rapid onset and offset time among all volatile anesthetics, has not yet been studied. In the present study, we explored the effect of the orexinergic system on the consciousness state induced by desflurane anesthesia. METHODS: The c-Fos staining was used to observe the activity changes of orexinergic neurons in the PeFLH and their efferent projection regions under desflurane anesthesia. Chemogenetic and optogenetic techniques were applied to compare the effect of PeFLH orexinergic neurons on the induction, emergence, and maintenance states between desflurane and isoflurane anesthesias. Orexinergic terminals in the paraventricular thalamic nucleus (PVT) were manipulated with pharmacologic, chemogenetic, and optogenetic techniques to assess the effect of orexinergic circuitry on desflurane anesthesia. RESULTS: Desflurane anesthesia inhibited the activity of orexinergic neurons in the PeFLH, as well as the neuronal activity in PVT, basal forebrain, dorsal raphe nucleus, and ventral tegmental area, as demonstrated by c-Fos staining. Activation of PeFLH orexinergic neurons prolonged the induction time and accelerated emergence from desflurane anesthesia but only influenced the emergence in isoflurane anesthesia, as demonstrated by chemogenetic and pharmacologic techniques. Meanwhile, optical activation of orexinergic neurons exhibited a long-lasting inhibitory effect on burst-suppression ratio (BSR) under desflurane anesthesia, and the effect may be contributed by the orexinergic PeFLH-PVT circuitry. The orexin-2 receptor (OX2R), but not orexin-1 receptor (OX1R), in the PVT, which had been inhibited most significantly by desflurane, mediated the proemergence effect of desflurane anesthesia. CONCLUSIONS: We discovered, for the first time, that orexinergic neurons in the PeFLH could not only influence the maintenance and emergence from isoflurane and desflurane anesthesias but also affect the induction under desflurane anesthesia. Furthermore, this specific effect is probably mediated by orexinergic PeFLH-PVT circuitry, especially OX2Rs in the PVT.


Asunto(s)
Periodo de Recuperación de la Anestesia , Anestesia por Inhalación , Anestésicos por Inhalación/farmacología , Estado de Conciencia/efectos de los fármacos , Desflurano/farmacología , Isoflurano/farmacología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Neuronas/efectos de los fármacos , Orexinas/farmacología , Potenciales de Acción , Animales , Electroencefalografía , Masculino , Núcleos Talámicos de la Línea Media/metabolismo , Neuronas/metabolismo , Optogenética , Receptores de Orexina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo
9.
Endocr Regul ; 55(2): 120-130, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020528

RESUMEN

It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Antipsicóticos/farmacología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Humanos , Locus Coeruleus/metabolismo , Núcleos Talámicos de la Línea Media/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
10.
Nat Commun ; 12(1): 2517, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947849

RESUMEN

Survival depends on a balance between seeking rewards and avoiding potential threats, but the neural circuits that regulate this motivational conflict remain largely unknown. Using an approach-food vs. avoid-predator threat conflict test in rats, we identified a subpopulation of neurons in the anterior portion of the paraventricular thalamic nucleus (aPVT) which express corticotrophin-releasing factor (CRF) and are preferentially recruited during conflict. Inactivation of aPVTCRF neurons during conflict biases animal's response toward food, whereas activation of these cells recapitulates the food-seeking suppression observed during conflict. aPVTCRF neurons project densely to the nucleus accumbens (NAc), and activity in this pathway reduces food seeking and increases avoidance. In addition, we identified the ventromedial hypothalamus (VMH) as a critical input to aPVTCRF neurons, and demonstrated that VMH-aPVT neurons mediate defensive behaviors exclusively during conflict. Together, our findings describe a hypothalamic-thalamostriatal circuit that suppresses reward-seeking behavior under the competing demands of avoiding threats.


Asunto(s)
Reacción de Prevención/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/fisiología , Núcleos Talámicos de la Línea Media/metabolismo , Red Nerviosa/fisiología , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Escala de Evaluación de la Conducta , Conflicto Psicológico , Femenino , Hipotálamo/metabolismo , Masculino , Núcleos Talámicos de la Línea Media/citología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de la radiación , Neuronas/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de la radiación , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Recompensa , Núcleo Hipotalámico Ventromedial/citología
11.
Neurosci Lett ; 756: 135950, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33979698

RESUMEN

The mechanisms of general anaesthetics such as propofol have drawn substantial attention. The effects of propofol on inhibitory postsynaptic currents are not exactly the same in different brain nuclei. Recent studies revealed that the paraventricular thalamic nucleus (PVT) is a critical nucleus modulating wakefulness. However, the effects of propofol on PVT neurons and the mechanisms underlying such effects remain unknown. Here, we performed the whole-cell recording of the PVT neurons in acute brain slices and bath application of propofol. We found that propofol hyperpolarized the membrane potentials of the PVT neurons and suppressed the action potentials induced by step-current injection. Propofol did not affect the spontaneous inhibitory postsynaptic currents (sIPSCs) amplitude or frequency, but prolonged the sIPSCs half-width. Besides, propofol increased miniature inhibitory synaptic currents (mIPSCs) frequency and half-width. Furthermore, propofol could induce GABAA receptors-mediated tonic inhibitory currents dose-dependently. Thus, our results demonstrate that propofol hyperpolarizes PVT neurons by modulating inhibitory currents via GABAA receptors in mice.


Asunto(s)
Anestésicos Intravenosos/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/farmacología , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp
12.
Theranostics ; 11(8): 3813-3829, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664863

RESUMEN

Background: Consolation behaviors toward the sick are common in humans. Anxiety in the relatives of the sick is also common. Anxiety can cause detrimental effects on multiple systems. However, our understanding on the neural mechanisms of these behaviors is limited because of the lack of small animal models. Methods: Five of 6- to 8-week-old CD-1 male mice were housed in a cage. Among them, 2 mice had right common artery exposure (surgery) and the rest were without surgery. Allo-grooming and performance in light and dark box and elevated plus maze tests of the mice were determined. Results: Mice without surgery had increased allo-grooming toward mice with surgery but decreased allo-grooming toward non-surgery intruders. This increased allo-grooming toward surgery mice was higher in familiar observers of surgery mice than that of mice that were not cage-mates of surgery mice before the surgery. Familiar observers developed anxious behavior after being with surgery mice. Surgery mice with familiar observers had less anxious behavior than surgery mice without interacting with familiar observers. Multiple brain regions including paraventricular thalamic nucleus (PVT) were activated in familiar observers. The activated cells in PVT contained orexin receptors. Injuring the neurons with ibotenic acid, antagonizing orexin signaling with an anti-orexin antibody or inhibiting neurons by chemogenetic approach in PVT abolished the consolation and anxious behaviors of familiar observers. Conclusions: Mice show consolation behavior toward the sick. This behavior attenuates the anxious behavior of surgery mice. The orexin signaling in the PVT neurons play a critical role in the consolation of familiar observers toward surgery mice and their anxious behavior. Considering that about 50 million patients have surgery annually in the United States, our study represents the initial attempt to understand neural mechanisms for consolation and anxiety of a large number of people.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Empatía/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Animales , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Empatía/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Modelos Animales , Modelos Neurológicos , Antagonistas de los Receptores de Orexina/administración & dosificación , Receptores de Orexina/metabolismo , Medicina de Precisión , Procedimientos Quirúrgicos Operativos/efectos adversos , Procedimientos Quirúrgicos Operativos/psicología
13.
Neurobiol Learn Mem ; 177: 107343, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242589

RESUMEN

The nucleus reuniens has been shown to support the acquisition, consolidation, maintenance, destabilization upon retrieval, and extinction of aversive memories. However, the direct participation of this thalamic subregion in memory reconsolidation is yet to be examined. The present study addressed this question in contextually fear-conditioned rats. Post-reactivation infusion of the GABAA receptor agonist muscimol, the glutamate N2A-containing NMDA receptor antagonist TCN-201, or the protein synthesis inhibitor anisomycin into the NR induced significant impairments in memory reconsolidation. Administering muscimol or TCN-201 and anisomycin locally, or associating locally infused muscimol or TCN-201 with systemically administered clonidine, an α2-receptor adrenergic agonist that attenuates the noradrenergic tonus associated with memory reconsolidation, produced no further reduction in freezing times when compared with the muscimol-vehicle, TCN-201-vehicle, vehicle-anisomycin, and vehicle-clonidine groups. This pattern of results indicates that such treatment combinations produced no additive/synergistic effects on reconsolidation. It is plausible that NR inactivation and antagonism of glutamate N2A-containing NMDA receptors weakened/prevented the subsequent action of anisomycin and clonidine because they disrupted the early stages of signal transduction pathways involved in memory reconsolidation. It is noteworthy that these pharmacological interventions, either alone or combined, induced no contextual memory specificity changes, as assessed in a later test in a novel and unpaired context. Besides, omitting memory reactivation precluded the impairing effects of muscimol, TCN-201, anisomycin, and clonidine on reconsolidation. Together, the present findings demonstrate interacting mechanisms through which the NR can regulate contextual fear memory restabilization.


Asunto(s)
Miedo/fisiología , Consolidación de la Memoria/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Anisomicina/farmacología , Clonidina/farmacología , Miedo/psicología , Agonistas de Receptores de GABA-A/farmacología , Masculino , Consolidación de la Memoria/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Muscimol/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/fisiología , Sulfonamidas/farmacología
14.
Neurobiol Learn Mem ; 175: 107313, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956808

RESUMEN

The neural circuit supporting aversive memory destabilization after retrieval includes the hippocampus, amygdala, and medial prefrontal cortex. The nucleus reuniens (NR) contributes to the functional interaction of these brain regions relevant to cognitive processing. However, the direct participation of this thalamic subregion in memory destabilization is yet to be investigated. The present study addressed this question in contextually fear-conditioned rats. Pre-reactivation infusion of the GABAA receptor agonist muscimol, the protein degradation inhibitor clasto-lactacystin ß-lactone (ß-lac), or the glutamate N2B-containing NMDA receptors antagonist ifenprodil into the NR prevented the post-reactivation amnestic effects of both locally infused anisomycin and systemically administered clonidine. In either case, the results suggest a significant disruption in memory destabilization. It is noteworthy that these pharmacological interventions induced no changes in expression or contextual specificity of the memory. Moreover, omitting memory reactivation precluded the muscimol, ß-lac, and ifenprodil effects on destabilization and the anisomycin and clonidine effects on reconsolidation. We also quantified the Egr1/Zif268-expressing neurons to investigate the effects of muscimol-induced NR inactivation on the activity-related plasticity locally, and in other brain regions supporting fear memory destabilization-reconsolidation. Relative to controls, there were reduced values in the NR, the dorsal CA1 hippocampus, the prelimbic cortex, and the infralimbic cortex. In contrast, increases happened in the ventral CA1 hippocampus and the basolateral amygdala. These results suggest that NR has a circuit-level influence on this process. Together, present findings demonstrate how the NR can regulate contextual fear memory destabilization upon retrieval.


Asunto(s)
Amígdala del Cerebelo/fisiología , Región CA1 Hipocampal/fisiología , Miedo , Memoria/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Anisomicina/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Clonidina/farmacología , Cognición , Inhibidores de Cisteína Proteinasa/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas de Receptores de GABA-A/farmacología , Lactonas/farmacología , Memoria/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Muscimol/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
15.
Psychopharmacology (Berl) ; 237(12): 3741-3758, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32852601

RESUMEN

RATIONALE: Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES: To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS: Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS: LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS: The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.


Asunto(s)
Señales (Psicología) , Área Hipotalámica Lateral/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Motivación/fisiología , Receptores de Orexina/fisiología , Recompensa , Animales , Benzoxazoles/administración & dosificación , Conducta de Elección/efectos de los fármacos , Conducta de Elección/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Área Hipotalámica Lateral/efectos de los fármacos , Isoquinolinas/administración & dosificación , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Motivación/efectos de los fármacos , Naftiridinas/administración & dosificación , Antagonistas de los Receptores de Orexina/administración & dosificación , Piridinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Urea/administración & dosificación , Urea/análogos & derivados
16.
J Psychopharmacol ; 34(11): 1280-1288, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32684084

RESUMEN

BACKGROUND: Nuclei located in the dorsal midline thalamus, such as the paraventricular nucleus of the thalamus (PVT), are crucial to modulate fear and aversive behaviour. In addition, the PVT shows a dense expression of µ-opioid receptors (MORs) and could mediate the anxiolytic effects of opioids. METHODS: We analysed the contribution of MORs in the dorsal midline thalamus (i.e. the PVT) to the performance of mice in a classical fear conditioning paradigm. We locally injected a specific agonist (DAMGO), an antagonist (CTAP) of MOR or saline as a control into the dorsal midline thalamus of male mice, prior to fear extinction training. We assessed freezing as a typical measure of fear and extended our analysis by evaluation of aversive, non-aversive and neutral behavioural features using compositional data analysis. RESULTS: Pharmacological blockade of MORs through CTAP in the dorsal midline thalamus induced a fear memory extinction deficit, as evidenced by maintained freezing during extinction sessions. Stimulation of MORs by DAMGO resulted in an overall increase in locomotor activity, associated with decreased freezing during recall of extinction. Compositional data analysis confirmed the freezing-related pharmacological effects and revealed specific differences in basic behavioural states. CTAP-treated mice remained in an aversive state, whereas DAMGO-treated mice displayed predominantly neutral behaviour. CONCLUSIONS: Fear extinction requires the integrity of the µ-opioid system in the dorsal midline thalamus. Pharmacological stimulation of MOR and associated facilitation of fear extinction recall suggest a potential therapeutic avenue for stress-related or anxiety disorders.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Núcleos Talámicos de la Línea Media/metabolismo , Antagonistas de Narcóticos/farmacología , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Clásico/efectos de los fármacos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Péptidos/farmacología , Receptores Opioides mu/antagonistas & inhibidores
17.
eNeuro ; 6(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31801741

RESUMEN

The paraventricular thalamic nucleus (PVT) is a brain region involved in regulating arousal, goal-oriented behaviors, and drug seeking, all key factors playing a role in substance use disorder. Given this, we investigated the temporal effects of administering morphine, an opioid with strongly addictive properties, on PVT neuronal function in mice using acute brain slices. Here, we show that morphine administration and electrophysiological recordings that occur during periods of animal inactivity (light cycle) elicit increases in PVT neuronal function during a 24-h abstinence time point. Furthermore, we show that morphine-induced increases in PVT neuronal activity at 24-h abstinence are occluded when morphine administration and recordings are performed during an animals' active state (dark cycle). Based on our electrophysiological results combined with previous findings demonstrating that PVT neuronal activity regulates drug-seeking behaviors, we investigated whether timing morphine administration with periods of vigilance (dark cycle) would decrease drug-seeking behaviors in an animal model of substance use disorder. We found that context-induced morphine-seeking behaviors were intact regardless of the time morphine was administered (e.g., light cycle or dark cycle). Our electrophysiological results suggest that timing morphine with various states of arousal may impact the firing of PVT neurons during abstinence. Although, this may not impact context-induced drug-seeking behaviors.


Asunto(s)
Núcleos Talámicos de la Línea Media/efectos de los fármacos , Dependencia de Morfina/fisiopatología , Morfina/administración & dosificación , Narcóticos/administración & dosificación , Neuronas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Esquema de Medicación , Comportamiento de Búsqueda de Drogas/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones Endogámicos C57BL , Núcleos Talámicos de la Línea Media/fisiopatología , Neuronas/fisiología , Fotoperiodo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos
18.
Cell Rep ; 28(3): 640-654.e6, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315044

RESUMEN

We remember our lives as sequences of events, but it is unclear how these memories are controlled during retrieval. In rats, the medial prefrontal cortex (mPFC) is positioned to influence sequence memory through extensive top-down inputs to regions heavily interconnected with the hippocampus, notably the nucleus reuniens of the thalamus (RE) and perirhinal cortex (PER). Here, we used an hM4Di synaptic-silencing approach to test our hypothesis that specific mPFC→RE and mPFC→PER projections regulate sequence memory retrieval. First, we found non-overlapping populations of mPFC cells project to RE and PER. Second, suppressing mPFC activity impaired sequence memory. Third, inhibiting mPFC→RE and mPFC→PER pathways effectively abolished sequence memory. Finally, a sequential lag analysis showed that the mPFC→RE pathway contributes to a working memory retrieval strategy, whereas the mPFC→PER pathway supports a temporal context memory retrieval strategy. These findings demonstrate that mPFC→RE and mPFC→PER pathways serve as top-down mechanisms that control distinct sequence memory retrieval strategies.


Asunto(s)
Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Receptor Muscarínico M4/metabolismo , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Antagonistas del GABA/farmacología , Hipocampo/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Corteza Perirrinal/efectos de los fármacos , Corteza Perirrinal/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Receptor Muscarínico M4/efectos de los fármacos , Antagonistas de la Serotonina/farmacología
19.
Nat Commun ; 9(1): 4527, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375397

RESUMEN

The thalamic nucleus reuniens (RE) receives dense projections from the medial prefrontal cortex (mPFC), interconnects the mPFC and hippocampus, and may serve a pivotal role in regulating emotional learning and memory. Here we show that the RE and its mPFC afferents are critical for the extinction of Pavlovian fear memories in rats. Pharmacological inactivation of the RE during extinction learning or retrieval increases freezing to an extinguished conditioned stimulus (CS); renewal of fear outside the extinction context was unaffected. Suppression of fear in the extinction context is associated with an increase in c-fos expression and spike firing in RE neurons to the extinguished CS. The role for the RE in suppressing extinguished fear requires the mPFC, insofar as pharmacogenetically silencing mPFC to RE projections impairs the expression of extinction memory. These results reveal that mPFC-RE circuits inhibit the expression of fear, a function that is essential for adaptive emotional regulation.


Asunto(s)
Vías Aferentes/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo , Núcleos Talámicos de la Línea Media/fisiología , Corteza Prefrontal/fisiología , Vías Aferentes/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Clásico/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Reacción Cataléptica de Congelación , Agonistas de Receptores de GABA-A/farmacología , Aprendizaje/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Muscimol/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Long-Evans
20.
J Neurosci ; 38(42): 8956-8966, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185459

RESUMEN

A single BDNF microinfusion into prelimbic (PrL) cortex immediately after the last cocaine self-administration session decreases relapse to cocaine-seeking. The BDNF effect is blocked by NMDAR antagonists. To determine whether synaptic activity in putative excitatory projection neurons in PrL cortex is sufficient for BDNF's effect on relapse, the PrL cortex of male rats was infused with an inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) viral vector driven by an αCaMKII promoter. Immediately after the last cocaine self-administration session, rats were injected with clozapine-N-oxide 30 min before an intra-PrL BDNF microinfusion. DREADD-mediated inhibition of the PrL cortex blocked the BDNF-induced decrease in cocaine-seeking after abstinence and cue-induced reinstatement after extinction. Unexpectedly, DREADD inhibition of PrL neurons in PBS-infused rats also reduced cocaine-seeking, suggesting that divergent PrL pathways affect relapse. Next, using a cre-dependent retroviral approach, we tested the ability of DREADD inhibition of PrL projections to the NAc core or the paraventricular thalamic nucleus (PVT) to alter cocaine-seeking in BDNF- and PBS-infused rats. Selective inhibition of the PrL-NAc pathway at the end of cocaine self-administration blocked the BDNF-induced decrease in cocaine-seeking but had no effect in PBS-infused rats. In contrast, selective inhibition of the PrL-PVT pathway in PBS-infused rats decreased cocaine-seeking, and this effect was prevented in BDNF-infused rats. Thus, activity in the PrL-NAc pathway is responsible for the therapeutic effect of BDNF on cocaine-seeking whereas inhibition of activity in the PrL-pPVT pathway elicits a similar therapeutic effect in the absence of BDNF.SIGNIFICANCE STATEMENT The major issue in cocaine addiction is the high rate of relapse. However, the neuronal pathways governing relapse remain unclear. Using a pathway-specific chemogenetic approach, we found that BDNF differentially regulates two key prelimbic pathways to guide long-term relapse. Infusion of BDNF in the prelimbic cortex during early withdrawal from cocaine self-administration decreases relapse that is prevented when neurons projecting from the prelimbic cortex to the nucleus accumbens core are inhibited. In contrast, BDNF restores relapse when neurons projecting from the prelimbic cortex to the posterior paraventricular thalamic nucleus are inhibited. This study demonstrates that two divergent cortical outputs mediate relapse that is regulated in opposite directions by infusing BDNF in the prelimbic cortex during early withdrawal from cocaine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Clozapina/administración & dosificación , Clozapina/análogos & derivados , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA