Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23211, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853329

RESUMEN

Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas de Peces/genética , N-Acilneuraminato Citidililtransferasa/genética , Oryzias/genética , Mutación Puntual , Animales , Células CHO , Cardiomiopatías/genética , Cardiomiopatías/veterinaria , Cricetulus , Estabilidad de Enzimas , Proteínas de Peces/química , Modelos Moleculares , N-Acilneuraminato Citidililtransferasa/química , Oryzias/fisiología , Dominios Proteicos , Solubilidad
2.
ACS Appl Mater Interfaces ; 13(41): 49433-49444, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612033

RESUMEN

Multienzymatic cascade reactions are a powerful strategy for straightforward and highly specific synthesis of complex materials, such as active substances in drugs. Cross-inhibitions and incompatible reaction steps, however, often limit enzymatic activity and thus the conversion. Such limitations occur, e.g., in the enzymatic synthesis of the biologically active sialic acid cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). We addressed this challenge by developing a confinement and compartmentalization concept of hydrogel-immobilized enzymes for improving the efficiency of the enzyme cascade reaction. The three enzymes required for the synthesis of CMP-Neu5Ac, namely, N-acyl-d-glucosamine 2-epimerase (AGE), N-acetylneuraminate lyase (NAL), and CMP-sialic acid synthetase (CSS), were immobilized into bulk hydrogels and microstructured hydrogel-enzyme-dot arrays, which were then integrated into microfluidic devices. To overcome the cytidine triphosphate (CTP) cross-inhibition of AGE and NAL, only a low CTP concentration was applied and continuously conveyed through the device. In a second approach, the enzymes were compartmentalized in separate reaction chambers of the microfluidic device to completely avoid cross-inhibitions and enable the use of higher substrate concentrations. Immobilization efficiencies of up to 25% and pronounced long-term activity of the immobilized enzymes for several weeks were realized. Moreover, immobilized enzymes were less sensitive to inhibition and the substrate-channeling effect between immobilized enzymes promoted the overall conversion in the trienzymatic cascade reaction. Based on this, CMP-Neu5Ac was successfully synthesized by immobilized enzymes in noncompartmentalized and compartmentalized microfluidic devices. This study demonstrates the high potential of immobilizing enzymes in (compartmentalized) microfluidic devices to perform multienzymatic cascade reactions despite cross-inhibitions under continuous flow conditions. Due to the ease of enzyme immobilization in hydrogels, this concept is likely applicable for many cascade reactions with or without cross-inhibition characteristics.


Asunto(s)
Citidina Monofosfato/análogos & derivados , Enzimas Inmovilizadas/química , Hidrogeles/química , Ácidos Siálicos/síntesis química , Carbohidrato Epimerasas/química , Proteínas Portadoras/química , Citidina Monofosfato/síntesis química , Dispositivos Laboratorio en un Chip , Microfluídica/instrumentación , Microfluídica/métodos , N-Acilneuraminato Citidililtransferasa/química , Oxo-Ácido-Liasas/química , Polietilenglicoles/química
3.
Biochemistry ; 59(34): 3157-3168, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31583886

RESUMEN

Cytidine 5'-monophosphate (CMP)-sialic acid synthetase (CSS) is an essential enzyme involved in the biosynthesis of carbohydrates and glycoconjugates containing sialic acids, a class of α-keto acids that are generally terminal key recognition residues by many proteins that play important biological and pathological roles. The CSS from Neisseria meningitidis (NmCSS) has been commonly used with other enzymes such as sialic acid aldolase and/or sialyltransferase in synthesizing a diverse array of compounds containing sialic acid or its naturally occurring and non-natural derivatives. To better understand its catalytic mechanism and substrate promiscuity, four NmCSS crystal structures trapped at various stages of the catalytic cycle with bound substrates, substrate analogues, and products have been obtained and are presented here. These structures suggest a mechanism for an "open" and "closed" conformational transition that occurs as sialic acid binds to the NmCSS/cytidine-5'-triphosphate (CTP) complex. The closed conformation positions critical residues to help facilitate the nucleophilic attack of sialic acid C2-OH to the α-phosphate of CTP, which is also aided by two observed divalent cations. Product formation drives the active site opening, promoting the release of products.


Asunto(s)
Biocatálisis , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Mutación , N-Acilneuraminato Citidililtransferasa/genética
4.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31205019

RESUMEN

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Asunto(s)
Proteínas Bacterianas/química , N-Acilneuraminato Citidililtransferasa/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/fisiología , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferasa/farmacología , N-Acilneuraminato Citidililtransferasa/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Ácidos Siálicos/metabolismo
5.
Glycobiology ; 27(4): 329-341, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27986833

RESUMEN

The occurrence and biological importance of sialic acid (Sia) and its metabolic enzymes in insects have been studied using Drosophila melanogaster. The most prominent feature of D. melanogaster CMP-Sia synthetase (DmCSS) is its Golgi-localization, contrasted with nuclear localization of vertebrate CSSs. However, it remains unclear if the Golgi-localization is common to other insect CSSs and why it happens. To answer these questions, Aedes aegypti (mosquito) CSS (AaCSS) and Tribolium castaneum (beetle) CSS (TcCSS) were cloned and characterized for their activity and subcellular localization. Our new findings show: (1) AaCSS and TcCSS share a common overall structure with DmCSS in terms of evolutionarily conserved motifs and the absence of the C-terminal domain typical to vertebrate CSSs; (2) when expressed in mammalian and insect cells, AaCSS and TcCSS showed in vivo and in vitro CSS activities, similar to DmCSS. In contrast, when expressed in bacteria, they lacked CSS activity because the N-terminal hydrophobic region appeared to induce protein aggregation; (3) when expressed in Drosophila S2 cells, AaCSS and TcCSS were predominantly localized in the ER, but not in the Golgi. Surprisingly, DmCSS was mainly secreted into the culture medium, although partially detected in Golgi. Consistent with these results, the N-terminal hydrophobic regions of AaCSS and TcCSS functioned as a signal peptide to render them soluble in the ER, while the N-terminus of DmCSS functioned as a membrane-spanning region of type II transmembrane proteins whose cytosolic KLK sequence functioned as an ER export signal. Accordingly, the differential subcellular localization of insect CSSs are distinctively more diverse than previously recognized.


Asunto(s)
Ácido N-Acetilneuramínico/genética , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/genética , Aedes/enzimología , Secuencias de Aminoácidos/genética , Animales , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Mutación , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/metabolismo , Conformación Proteica , Tribolium/enzimología
6.
Biochem J ; 473(13): 1905-16, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27114558

RESUMEN

CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Células Cultivadas , Drosophila , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , Mutación , N-Acilneuraminato Citidililtransferasa/clasificación , N-Acilneuraminato Citidililtransferasa/genética , Filogenia , Relación Estructura-Actividad , Especificidad por Sustrato , Temperatura
7.
Chem Commun (Camb) ; 51(51): 10310-3, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26023910

RESUMEN

Galacto-N-biose (GNB) derivatives were efficiently synthesized from galactose derivatives via a one-pot two-enzyme system containing two promiscuous enzymes from Bifidobacterium infantis: a galactokinase (BiGalK) and a d-galactosyl-ß1-3-N-acetyl-d-hexosamine phosphorylase (BiGalHexNAcP). Mono-sialyl and di-sialyl galacto-N-biose derivatives were then prepared using a one-pot two-enzyme system containing a CMP-sialic acid synthetase and an α2-3-sialyltransferase or an α2-6-sialyltransferase.


Asunto(s)
Disacáridos/síntesis química , Galactanos/síntesis química , Ácidos Siálicos/síntesis química , Bifidobacterium/enzimología , Galactoquinasa/química , Galactoquinasa/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa , beta-Galactosida alfa-2,3-Sialiltransferasa
8.
Top Curr Chem ; 366: 139-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24141690

RESUMEN

Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.


Asunto(s)
Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Células Eucariotas/enzimología , Glicoconjugados/metabolismo , N-Acilneuraminato Citidililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/química , Transporte Biológico , Dominio Catalítico , Comunicación Celular , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Células Eucariotas/química , Glicoconjugados/química , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , N-Acilneuraminato Citidililtransferasa/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
J Biol Chem ; 287(16): 13239-48, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22351762

RESUMEN

Sialic acids (Sia) form the nonreducing end of the bulk of cell surface-expressed glycoconjugates. They are, therefore, major elements in intercellular communication processes. The addition of Sia to glycoconjugates requires metabolic activation to CMP-Sia, catalyzed by CMP-Sia synthetase (CMAS). This highly conserved enzyme is located in the cell nucleus in all vertebrates investigated to date, but its nuclear function remains elusive. Here, we describe the identification and characterization of two Cmas enzymes in Danio rerio (dreCmas), one of which is exclusively localized in the cytosol. We show that the two cmas genes most likely originated from the third whole genome duplication, which occurred at the base of teleost radiation. cmas paralogues were maintained in fishes of the Otocephala clade, whereas one copy got subsequently lost in Euteleostei (e.g. rainbow trout). In zebrafish, the two genes exhibited a distinct spatial expression pattern. The products of these genes (dreCmas1 and dreCmas2) diverged not only with respect to subcellular localization but also in substrate specificity. Nuclear dreCmas1 favored N-acetylneuraminic acid, whereas the cytosolic dreCmas2 showed highest affinity for 5-deamino-neuraminic acid. The subcellular localization was confirmed for the endogenous enzymes in fractionated zebrafish lysates. Nuclear entry of dreCmas1 was mediated by a bipartite nuclear localization signal, which seemed irrelevant for other enzymatic functions. With the current demonstration that in zebrafish two subfunctionalized cmas paralogues co-exist, we introduce a novel and unique model to detail the roles that CMAS has in the nucleus and in the sialylation pathways of animal cells.


Asunto(s)
Evolución Molecular , N-Acilneuraminato Citidililtransferasa/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Núcleo Celular/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Glicosilación , Ratones , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Células 3T3 NIH , ARN Mensajero/genética , Especificidad por Sustrato/fisiología , Pez Cebra/embriología
10.
Appl Microbiol Biotechnol ; 93(6): 2411-23, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21968653

RESUMEN

Cytidine 5'-monophosphate (CMP)-sialic acid synthetases (CSSs) catalyze the formation of CMP-sialic acid from CTP and sialic acid, a key step for sialyltransferase-catalyzed biosynthesis of sialic acid-containing oligosaccharides and glycoconjugates. More than 50 different sialic acid forms have been identified in nature. To facilitate the enzymatic synthesis of sialosides with diverse naturally occurring sialic acid forms and their non-natural derivatives, CMP-sialic acid synthetases with promiscuous substrate specificity are needed. Herein we report the cloning, characterization, and substrate specificity studies of a new CSS from Pasteurella multocida strain P-1059 (PmCSS) and a CSS from Haemophillus ducreyi (HdCSS). Based on protein sequence alignment and substrate specificity studies of these two CSSs and a Neisseria meningitidis CSS (NmCSS), as well as crystal structure modeling and analysis of NmCSS, NmCSS mutants (NmCSS_S81R and NmCSS_Q163A) with improved substrate promiscuity were generated. The strategy of combining substrate specificity studies of enzymes from different sources and protein crystal structure studies can be a general approach for designing enzyme mutants with improved activity and substrate promiscuity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Pasteurella multocida/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Haemophilus ducreyi/química , Haemophilus ducreyi/enzimología , Haemophilus ducreyi/genética , Datos de Secuencia Molecular , Mutación , N-Acilneuraminato Citidililtransferasa/genética , Neisseria meningitidis/química , Neisseria meningitidis/genética , Pasteurella multocida/química , Pasteurella multocida/genética , Alineación de Secuencia , Especificidad por Sustrato
11.
FEBS J ; 277(13): 2779-90, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20491913

RESUMEN

Sialylated oligosaccharides, present on mammalian outer-cell surfaces, play vital roles in cellular interactions and some bacteria are able to mimic these structures to evade their host's immune system. It would be of great benefit to the study of infectious and autoimmune diseases and cancers, to understand the pathway of sialylation in detail to enable the design and production of inhibitors and mimetics. Sialylation occurs in two stages, the first to activate sialic acid and the second to transfer it to the target molecule. The activation step is catalysed by the enzyme CMP-Neu5Ac synthetase (CNS). Here we used crystal structures of CNS and similar enzymes to predict residues of importance in the CNS from Neisseria meningitidis. Nine residues were mutated to alanine, and the steady-state enzyme kinetic parameters were measured using a continuous assay to detect one of the products of the reaction, pyrophosphate. Mutations that caused the greatest loss in activity included K142A, D211A, D209A and a series of mutations at residue Q104, highlighted from sequence-alignment studies of related enzymes, demonstrating significant roles for these residues in the catalytic mechanism of CNS. The mutations of D211A and D209A provide strong evidence for a previously proposed metal-binding site in the enzyme, and the results of our mutations at residue Q104 lead us to include this residue in the metal-binding site of an intermediate complex. This suggests that, like the sugar-activating lipopolysaccharide-synthesizing CMP-2-keto-3-deoxy-manno-octonic acid synthetase enzyme KdsB, CNS recruits two Mg(2+) ions during the catalytic cycle.


Asunto(s)
Biocatálisis , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Dominio Catalítico , Ácido N-Acetilneuramínico Citidina Monofosfato/síntesis química , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Cinética , N-Acilneuraminato Citidililtransferasa/genética , Mutación Puntual
12.
Bioorg Med Chem Lett ; 19(20): 5869-71, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19740656

RESUMEN

A convenient chemoenzymatic strategy for synthesizing sialosides containing a C5-diversified sialic acid was developed. The alpha2,3- and alpha2,6-linked sialosides containing a 5-azido neuraminic acid synthesized by a highly efficient one-pot three-enzyme approach were converted to C5''-amino sialosides, which were used as common intermediates for chemical parallel synthesis to quickly generate a series of sialosides containing various sialic acid forms.


Asunto(s)
Glicósidos/síntesis química , Ácido N-Acetilneuramínico/química , Biocatálisis , Glicósidos/química , Glicósidos/farmacología , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Oxo-Ácido-Liasas/química , Oxo-Ácido-Liasas/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo
13.
J Mol Biol ; 393(1): 83-97, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19666032

RESUMEN

The biosynthesis of sialic acid-containing glycoconjugates is crucial for the development of vertebrate life. Cytidine monophosphate-sialic acid synthetase (CSS) catalyzes the metabolic activation of sialic acids. In vertebrates, the enzyme is chimeric, with the N-terminal domain harboring the synthetase activity. The function of the highly conserved C-terminal domain (CSS-CT) is unknown. To shed light on its biological function, we solved the X-ray structure of murine CSS-CT to 1.9 A resolution. CSS-CT is a stable shamrock-like tetramer that superimposes well with phosphatases of the haloacid dehalogenase superfamily. However, a region found exclusively in vertebrate CSS-CT appears to block the active-site entrance. Accordingly, no phosphatase activity was observed in vitro, which points toward a nonenzymatic function of CSS-CT. A computational three-dimensional model of full-length CSS, in combination with in vitro oligomerization studies, provides evidence that CSS-CT serves as a platform for the quaternary organization governing the kinetic properties of the physiologically active enzyme as demonstrated in kinetic studies.


Asunto(s)
N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
Org Biomol Chem ; 7(1): 27-9, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19081938

RESUMEN

A modular replacement approach to the synthesis of sulfo-nucleotide analogs prepared from condensation of nucleoside aldehydes with bis phosphonate Horner-Wadsworth-Emmons reagents is disclosed. These analogs were shown to be inhibitors of Neisseria meningitidis CSS (NmCSS), which is a key enzyme in the biosynthesis of the capsular polysaccharides required for bacterial infection.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , N-Acilneuraminato Citidililtransferasa/antagonistas & inhibidores , N-Acilneuraminato Citidililtransferasa/química , Sulfonas/química , Animales , Núcleo Celular/metabolismo , Química Farmacéutica/métodos , Citoplasma/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Humanos , Cinética , Modelos Químicos , Neisseria meningitidis/enzimología , Nucleótidos/química , Polisacáridos/química
15.
Appl Microbiol Biotechnol ; 80(5): 757-65, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18716769

RESUMEN

Sialic acids are abundant nine-carbon sugars expressed terminally on glycoconjugates of eukaryotic cells and are crucial for a variety of cell biological functions such as cell-cell adhesion, intracellular signaling, and in regulation of glycoproteins stability. In bacteria, N-acetylneuraminic acid (Neu5Ac) polymers are important virulence factors. Cytidine 5'-monophosphate (CMP)-N-acetylneuraminic acid synthetase (CSS; EC 2.7.7.43), the key enzyme that synthesizes CMP-N-acetylneuraminic acid, the donor molecule for numerous sialyltransferase reactions, is present in both prokaryotes and eukaryotic systems. Herein, we emphasize the source, function, and biotechnological applications of CSS enzymes from bacterial sources. To date, only a few CSS from pathogenic bacterial species such as Neisseria meningitidis, Escherichia coli, group B streptococci, Haemophilus ducreyi, and Pasteurella hemolytica and an enzyme from nonpathogenic bacterium, Clostridium thermocellum, have been described. Overall, the enzymes from both Gram-positive and Gram-negative bacteria share common catalytic properties such as their dependency on divalent cation, temperature and pH profiles, and catalytic mechanisms. The enzymes, however, can be categorized as smaller and larger enzymes depending on their molecular weight. The larger enzymes in some cases are bifunctional; they have exhibited acetylhydrolase activity in addition to their sugar nucleotidyltransferase activity. The CSSs are important enzymes for the chemoenzymatic synthesis of various sialooligosaccharides of significance in biotechnology.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Microbiología Industrial , N-Acilneuraminato Citidililtransferasa/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cinética , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/genética
17.
Appl Microbiol Biotechnol ; 76(4): 827-34, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17602221

RESUMEN

In this study, we report the cloning, recombinant expression, and biochemical characterization of a heat-stable CMP-N-acylneuraminic acid (NeuAc) synthetase from Clostridium thermocellum ATCC 27405. A high throughput electrospray ionization mass spectrometry (ESI-MS)-based assay demonstrates that the enzyme has an absolute requirement for a divalent cation for activity and reaches maximum activity in the presence of 10 mM Mn(2+). The enzyme is active at pH 8-13 in Tris-HCl buffer and at 37-60 degrees C, and maximum activity is observed at pH 9.5 and 50 degrees C in the presence of 0.2 mM dithiothreitol. In addition to NeuAc, the enzyme also accepts the analog N-glycolylneuraminic acid (NeuGc) as a substrate. The apparent Michaelis constants for cytidine triphosphate and NeuAc or NeuGc are 240 +/- 20, 130 +/- 10, and 160 +/- 10 microM, respectively, with corresponding turnover numbers of 3.33, 2.25, and 1.66 s(-1), respectively. An initial velocity study of the enzymatic reaction indicates an ordered bi-bi catalytic mechanism. In addition to demonstration of a thermostable and substrate-tolerant enzyme, confirmation of the biochemical function of a gene for CMP-NeuAc synthetase in C. thermocellum also opens the question of the biological function of CMP-NeuAc in such nonpathogenic microorganisms.


Asunto(s)
Clostridium thermocellum/enzimología , Microbiología Industrial/métodos , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/genética , Clonación Molecular , Clostridium thermocellum/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , N-Acilneuraminato Citidililtransferasa/aislamiento & purificación , N-Acilneuraminato Citidililtransferasa/metabolismo , Reacción en Cadena de la Polimerasa , Espectrometría de Masa por Ionización de Electrospray , Temperatura
18.
Biochem Biophys Res Commun ; 359(4): 866-70, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17574211

RESUMEN

We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (alpha/beta-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.


Asunto(s)
Bioensayo/métodos , Espectroscopía de Resonancia Magnética/métodos , N-Acilneuraminato Citidililtransferasa/química , Mapeo de Interacción de Proteínas/métodos , Sefarosa/química , Enzimas Inmovilizadas/química , Ligandos , Unión Proteica
19.
Glycobiology ; 17(9): 945-54, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17580313

RESUMEN

The terminal sugar sialic acid (Sia) plays a pivotal role in cell-cell interaction and recognition. A prerequisite for the biosynthesis of sialoglycoconjugates is the activation of Sia to cytidine monophosphate-Sia (CMP-Sia), by CMP-Sia synthetases (CMP-Sia-syn). CMP-Sia-syn are conserved from bacteria to man, and have been found to reside in the nucleus of all vertebrate species analysed to date. We previously cloned the CMP-Sia-syn from rainbow trout (rt) and identified three clusters of basic amino acids (BC) that might act as nuclear localization signals (NLS). Here, we utilised chimeric proteins and rt CMP-Sia-syn mutants in which putative NLS sequences were deleted, to identify the nuclear transport signal. Divergent from the mouse enzyme, where the crucial NLS is part of the enzyme's active site, in the rt CMP-Sia-syn the NLS and active site are disparate. The crucial NLS in the fish enzyme is bipartite and the functionality depends on a free N-terminus. Comparative analysis of all putative rt NLS in mouse and fish cells identified a second inferior motif (rtBC5-6), which was functional only in fish cells suggesting some differences in transport mechanism or folding variabilities in fish. Moreover, based on computational analyses of putative CMP-Sia-syn from distant deuterostomian organisms it was concluded that CMP-Sia-syn nuclear localization is a relatively recent invention, originating in echinoderms. In summary, our data describing structural differences in the NLS of vertebrate CMP-Sia-syn, and the independence of Sia activation from the subcellular localization of the enzyme, provide supporting evidence that nuclear localization is linked to a second yet unknown function.


Asunto(s)
N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Señales de Localización Nuclear , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Oncorhynchus mykiss , Transducción de Señal , Especificidad de la Especie
20.
Biochem Biophys Res Commun ; 355(1): 174-80, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17292865

RESUMEN

The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.


Asunto(s)
Núcleo Celular/enzimología , N-Acilneuraminato Citidililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Ratones , Datos de Secuencia Molecular , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/genética , Fragmentos de Péptidos/química , Plásmidos , Polidesoxirribonucleótidos/química , Reacción en Cadena de la Polimerasa , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...