Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Epilepsia Open ; 8 Suppl 1: S35-S65, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861477

RESUMEN

Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.


Asunto(s)
Receptores de GABA-A , Estado Epiléptico , Humanos , Receptores de GABA-A/metabolismo , N-Metilaspartato/efectos adversos , Receptores AMPA , Estado Epiléptico/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Benzodiazepinas/efectos adversos , Receptores de N-Metil-D-Aspartato/fisiología , Receptores de N-Metil-D-Aspartato/uso terapéutico
2.
Neurosci Lett ; 793: 136999, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36470506

RESUMEN

Resveratrol, a natural polyphenolic compound, reportedly possesses numerous biological activities, including anti-inflammatory and antioxidant effects. In the current study, we examined (1) the dilator effects of resveratrol on retinal arterioles, (2) the protective effects of resveratrol against excitotoxic retinal injury, and (3) whether these effects are mediated by the AMP-activated kinase (AMPK)-dependent pathway in rats. Male Wistar rats (7 to 10 weeks old) were used in this study. The diameters of the retinal arterioles, mean arterial pressure, and heart rate were measured in vivo. The retinal injury was assessed by histological examination. Intravenous injection of resveratrol (3 mg/kg) increased the diameter of the retinal arterioles without affecting the mean arterial pressure and heart rate. The AMPK inhibitor, compound C (5 mg/kg, intravenously), significantly attenuated the retinal vasodilator response to resveratrol. Seven days after intravitreal injection of N-methyl-d-aspartic acid (NMDA; 25, 50, and 100 nmol/eye), the number of cells located in the ganglion cell layer (GCL) was reduced, along with thinning of the inner plexiform layer. Intravitreal resveratrol injection (100 nmol/eye) reduced the NMDA (25 and 50 nmol/eye)-induced cell loss in the GCL. The neuroprotective effect of resveratrol was significantly but not completely reversed by compound C (10 nmol/eye). These results suggest that resveratrol dilates retinal arterioles and protects against NMDA-induced retinal neurodegeneration via an AMPK-dependent pathway in rats. Resveratrol may have the potential to slow the onset and progression of diseases associated with retinal ischemia by improving impaired retinal circulation and protecting retinal neuronal cells.


Asunto(s)
N-Metilaspartato , Resveratrol , Células Ganglionares de la Retina , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Arteriolas/efectos de los fármacos , N-Metilaspartato/efectos adversos , N-Metilaspartato/farmacología , Ratas Wistar , Resveratrol/farmacología , Retina/metabolismo
3.
Food Funct ; 13(20): 10401-10414, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36148811

RESUMEN

Rutin, a naturally derived flavonoid molecule with known neuroprotective properties, has been demonstrated to have anticonvulsive potential, but the mechanism of this effect is still unclear. The current study aimed to investigate the probable antiseizure mechanisms of rutin in rats using the kainic acid (KA) seizure model. Rutin (50 and 100 mg kg-1) and carbamazepine (100 mg kg-1) were administered daily by oral gavage for 7 days before KA (15 mg kg-1) intraperitoneal (i.p.) injection. Seizure behavior, neuronal cell death, glutamate concentration, excitatory amino acid transporters (EAATs), glutamine synthetase (GS), glutaminase, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, N-methyl-D-aspartate (NMDA) receptor subunits GluN2A and GluN2B, activated astrocytes, and inflammatory and anti-inflammatory molecules in the hippocampus were evaluated. Supplementation with rutin attenuated seizure severity in KA-treated rats and reversed KA-induced neuronal loss and glutamate elevation in the hippocampus. Decreased glutaminase and GluN2B, and increased EAATs, GS, GluA1, GluA2 and GluN2A were observed with rutin administration. Rutin pretreatment also suppressed activated astrocytes, downregulated the protein levels of inflammatory molecules [interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high mobility group Box 1 (HMGB1), interleukin-1 receptor 1 (IL-1R1), and Toll-like receptor-4 (TLR-4)] and upregulated anti-inflammatory molecule interleukin-10 (IL-10) protein expression. Taken together, the results indicate that the preventive treatment of rats with rutin attenuated KA-induced seizures and neuronal loss by decreasing glutamatergic hyperactivity and suppressing the IL-1R1/TLR4-related neuroinflammatory cascade.


Asunto(s)
Proteína HMGB1 , Ácido Kaínico , Sistemas de Transporte de Aminoácidos , Animales , Antiinflamatorios/farmacología , Carbamazepina , Glutamato-Amoníaco Ligasa/metabolismo , Glutamato-Amoníaco Ligasa/farmacología , Ácido Glutámico/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Glutaminasa/farmacología , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipocampo/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ácido Kaínico/efectos adversos , N-Metilaspartato/efectos adversos , N-Metilaspartato/metabolismo , Ratas , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/uso terapéutico , Rutina/metabolismo , Rutina/farmacología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/efectos adversos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
4.
Cell Tissue Res ; 390(2): 173-187, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35895162

RESUMEN

Matrix metalloproteinases (MMPs) and tumor necrosis factor (TNF)-α contribute to the pathogenesis of several ocular diseases. Previous studies have shown that MMP-9 activation plays an important role in capillary degeneration in injured retinas. In this study, we aimed to determine the roles of TNF-α in capillary degeneration and MMP-9 activation in the injured retina. In rats, retinal injury was induced by intravitreal injection of N-methyl-D-aspartic acid (NMDA, 200 nmol) at postnatal day 7. We examined (1) the effects of blocking MMP-9 and TNF-α signaling pathway on capillary degeneration, (2) changes in protein levels and distribution of MMP-9 and TNF-α, and (3) the interaction between MMP-9 and TNF-α in regulating the expression level of each protein in retinas of NMDA-injected eyes. Intravitreal injection of GM6001, an MMP inhibitor, or TNF-α neutralizing antibody (anti-TNF-α Ab) attenuated capillary degeneration in retinas of NMDA-injected eyes. Protein levels of TNF-α increased 2 h after NMDA injection, whereas those of MMP-9 increased 4 h after the injection. Anti-TNF-α Ab suppressed activation of MMP-9 in retinas of NMDA-injected eyes, whereas GM6001 diminished the TNF-α protein expression. Incubation of recombinant TNF-α with supernatants of homogenized retina increased protein levels and activity of MMP-9. These results suggest that TNF-α and MMP-9 collaboratively increase their expression levels in the retina following neurodegeneration, thus leading to retinal capillary degeneration. The cooperative interaction between MMP-9 and TNF-α could be involved in the exacerbation of retinal neurovascular degeneration.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Degeneración Retiniana , Ratas , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , N-Metilaspartato/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Animales Recién Nacidos , Inhibidores del Factor de Necrosis Tumoral , Retina/metabolismo , Degeneración Retiniana/patología
5.
Epilepsia Open ; 7(1): 181-186, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34784103

RESUMEN

Infantile spasms (IS) is an epileptic encephalopathy with a poor neurodevelopmental prognosis, and limited, often ineffective treatment options. The effectiveness of metabolic approaches to seizure control is being increasingly shown in a wide variety of epilepsies. This study investigates the efficacy of the glycolysis inhibitor 2-deoxyglucose (2-DG) and the ketone body ß-hydroxybutyrate (BHB) in the betamethasone-NMDA model of rat IS. Prenatal rats were exposed to betamethasone on gestational day 15 (G15) and NMDA on postnatal day 15 (P15). Video-electroencephalography (v-EEG) was used to monitor spasms. NMDA consistently induced hyperflexion spasms associated with interictal sharp-slow wave EEG activity and ictal flattening of EEG signals, reminiscent of hypsarrhythmia and electrodecrement, respectively. 2-DG (500 mg/kg, i.p), BHB (200 mg/kg, i.p.), or both were administered immediately after occurrence of the first spasm. No experimental treatment altered significantly the number, severity, or progression of spasms compared with saline treatment. These data suggest that metabolic inhibition of glycolysis or ketogenesis does not reduce infantile spasms in the NMDA model. The study further validates the betamethasone-NMDA model in terms of its behavioral and electrographic resemblance to human IS and supports its use for preclinical drug screening.


Asunto(s)
Espasmos Infantiles , Ácido 3-Hidroxibutírico/efectos adversos , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/uso terapéutico , Animales , Animales Recién Nacidos , Betametasona/efectos adversos , Desoxiglucosa/efectos adversos , Modelos Animales de Enfermedad , Femenino , N-Metilaspartato/efectos adversos , Embarazo , Ratas , Convulsiones/tratamiento farmacológico , Espasmo/tratamiento farmacológico , Espasmos Infantiles/tratamiento farmacológico
6.
Biol Pharm Bull ; 44(5): 742-746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952831

RESUMEN

The intrathecal (i.t.) injection of substance P (SP) and N-methyl-D-aspartate (NMDA) induce transient nociceptive response by activating neurokinin (NK) 1 and NMDA receptors, respectively. We have recently reported that angiotensin (Ang) (1-7), an N-terminal fragment of Ang II, could alleviate several types of pain including neuropathic and inflammatory pain by activating spinal MAS1. Here, we investigated whether Ang (1-7) can inhibit the SP- and NMDA-induced nociceptive response. The nociceptive response induced by an i.t. injection of SP or NMDA was assessed by measuring the duration of hindlimb scratching directed toward the flank, biting and/or licking of the hindpaw or the tail for 5 min. Localization of MAS1 and either NK1 or NMDA receptors in the lumbar superficial dorsal horn was determined by immunohistochemical observation. The nociceptive response induced by SP and NMDA was attenuated by the i.t. co-administration of Ang (1-7) (0.03-3 pmol) in a dose-dependent manner. The inhibitory effects of Ang (1-7) (3 pmol) were attenuated by A779 (100 pmol), a MAS1 antagonist. Moreover, immunohistochemical analysis showed that spinal MAS1 co-localized with NK1 receptors and NMDA receptors on cells in the dorsal horn. Taken together, the i.t. injection of Ang (1-7) attenuated the nociceptive response induced by SP and NMDA via spinal MAS1, which co-localized with NK1 and NMDA receptors. Thus, the spinal Ang (1-7)/MAS1 pathway could represent a therapeutic target to effectively attenuate spinal pain transmission caused by the activation of NK1 or NMDA receptors.


Asunto(s)
Angiotensina I/administración & dosificación , Nocicepción/efectos de los fármacos , Dolor Nociceptivo/tratamiento farmacológico , Fragmentos de Péptidos/administración & dosificación , Proteínas Proto-Oncogénicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Espinales , Masculino , Ratones , N-Metilaspartato/administración & dosificación , N-Metilaspartato/efectos adversos , Dolor Nociceptivo/inducido químicamente , Dolor Nociceptivo/diagnóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neuroquinina-1/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sustancia P/administración & dosificación , Sustancia P/efectos adversos
7.
Neuroscience ; 463: 184-196, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33838289

RESUMEN

Neuronal excitability and susceptibility to excitotoxic damage can be sex-specific, with neurons from males usually being more 'easily excitable' compared to neurons from females, especially during development. Increased excitability at an individual neuronal level can lead to the formation of hyperexcitable neuronal networks, which, consequently can make the brain more seizure prone. Both animal and clinical data suggest that males experience more frequent and severe seizures than do females. Serotonin (5-hydroxytryptamine; 5-HT) can mediate neuronal excitability and seizure behavior, often serving as an anticonvulsant. Importantly, 5-HT signaling during parts of the perinatal period is sexually dimorphic. Sex differences during development have been reported in both serotonin levels and receptor type (excitatory vs. inhibitory) expression in a manner that may leave the male brain more vulnerable to over-excitation. Thus, we aimed to determine if the anticonvulsant effects of 5-HT were sex- and/or age-dependent in juvenile animals. We report a baseline sex difference in N-methyl-d-aspartate (NMDA)-induced seizure behavior and hippocampal neuronal loss, with postnatal day (PND) 14 males exhibiting more severe seizure behavior compared to females. Pretreatment with the general 5-HT receptor agonist 5-methoxytryptamine (5-MT) abolishes baseline sex differences, providing an anticonvulsant effect for males only. These sex differences appear to be at least in part organized by testosterone, as females given neonatal androgen exhibit a seizure behavior profile in between that of males and females.


Asunto(s)
N-Metilaspartato/efectos adversos , Convulsiones/tratamiento farmacológico , Serotonina/uso terapéutico , Animales , Femenino , Masculino , Embarazo , Ratas , Receptores de N-Metil-D-Aspartato , Convulsiones/inducido químicamente , Caracteres Sexuales
8.
Pharmacol Biochem Behav ; 203: 173154, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609599

RESUMEN

Interest in developing NMDA receptor antagonists with reduced side-effects for neurological and psychiatric disorders has been re-energized by the recent introduction of esketamine into clinical practice for treatment-resistant depression. Structural analogs of dextromethorphan bind with low affinity to the NMDA receptor ion channel, have functional effects in vivo, and generally display a lower propensity for side-effects than that of ketamine and other higher affinity antagonists. As such, the aim of the present study was to determine whether a series of N-substituted-3-alkoxy-substituted dextromethorphan analogs produce their anticonvulsant effects through NMDA receptor blockade. Compounds were studied against NMDA-induced seizures in rats. Compounds were administered intracerebroventricularly in order to mitigate confounds of drug metabolism that arise from systemic administration. Comparison of the anticonvulsant potencies to their affinities for NMDA, σ1, and σ2 binding sites were made in order to evaluate the contribution of these receptors to anticonvulsant efficacy. The potencies to block convulsions were positively associated with their affinities to bind to the NMDA receptor ion channel ([3H]-TCP binding) (r = 0.71, p < 0.05) but not to σ1 receptors ([3H]-SKF 10047 binding) (r = -0.31, p = 0.46) or to σ2 receptors ([3H]-DTG binding) (p = -0.38, p = 0.36). This is the first report demonstrating that these dextromethorphan analogs are functional NMDA receptor antagonists in vivo. Given their potential therapeutic utility and favorable side-effect profiles, such low affinity NMDA receptor antagonists could be considered for further development in neurological (e.g., anticonvulsant) and psychiatric (e.g., antidepressant) disorders.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Dextrometorfano/análogos & derivados , Dextrometorfano/administración & dosificación , Dextrorfano/administración & dosificación , Agonistas de Aminoácidos Excitadores/efectos adversos , Antagonistas de Aminoácidos Excitadores/administración & dosificación , N-Metilaspartato/efectos adversos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Alcoholes/química , Animales , Anticonvulsivantes/metabolismo , Sitios de Unión , Dextrometorfano/metabolismo , Dextrorfano/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/metabolismo , Infusiones Intraventriculares , Ligandos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Resultado del Tratamiento , Receptor Sigma-1
9.
J Basic Clin Physiol Pharmacol ; 32(2): 57-66, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33155994

RESUMEN

OBJECTIVES: Neurogenesis occurs in the mammalian brain throughout adulthood and increases in response to metabolic, toxic or traumatic insults. To remove potentially superfluous or unwanted neural stem cells/neuronal progenitors, their rate of proliferation and differentiation is fine-tuned against their rate of apoptosis. Apoptosis requires the transcriptional and posttranslational activation of Bcl-2-homolgy domain 3 (BH3)-only proteins. Previously, we demonstrated that the BH3-only protein p53-upregulated mediator of apoptosis (Puma) controls the physiological rate of apoptosis of neural precursor cells in the adult mouse hippocampus. Puma's role in controlling a lesion-induced increase in neural stem cells is currently not known. METHODS: We employed a model of local, N-methyl-D-asparte (NMDA)-induced excitotoxic injury to the CA1 hippocampal subfield and immunofluorescence labelling to produce increased neural stem cell proliferation/ neurogenesis in the dentate gyrus at two survival times following the excitotoxic lesion. RESULTS: Deletion of puma failed to rescue any NMDA-induced increase in adult born cells as assessed by BrdU or Doublecortin labelling in the long-term. No difference in the proportion of BrdU/NeuN-positive cells comparing the different genotypes and treatments suggested that the phenotypic fate of the cells was preserved regardless of the genotype and the treatment. CONCLUSIONS: While neurogenesis is up-regulated in puma-deficient animals following NMDA-induced excitotoxicity to the hippocampal CA1 subfield, puma deficiency could not protect this surplus of newly generated cells from apoptotic cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Región CA1 Hipocampal/citología , Células-Madre Neurales , Neurogénesis , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Bromodesoxiuridina , Ratones , N-Metilaspartato/efectos adversos , Células-Madre Neurales/citología
10.
Molecules ; 25(19)2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987671

RESUMEN

We have recently demonstrated that bioactive molecules, extracted by high pressure and temperature from olive pomace, counteract calcium-induced cell damage to different cell lines. Here, our aim was to study the effect of the same extract on murine cortical neurons, since the preservation of the intracellular Ca2+-homeostasis is essential for neuronal function and survival. Accordingly, we treated neurons with different stimuli in order to evoke cytotoxic glutamatergic activation. In these conditions, the high-pressure and temperature extract from olive pomace (HPTOPE) only abolished the effects of N-methyl-d-aspartate (NMDA). Particularly, we observed that HPTOPE was able to promote the neuron rescue from NMDA-induced cell death. Moreover, we demonstrated that HPTOPE is endowed with the ability to maintain the intracellular Ca2+-homeostasis following NMDA receptor overactivation, protecting neurons from Ca2+-induced adverse effects, including aberrant calpain proteolytic activity. Moreover, we highlight the importance of the extraction conditions used that, without producing toxic molecules, allow us to obtain protecting molecules belonging to proanthocyanidin derivatives like procyanidin B2. In conclusion, we can hypothesize that HPTOPE, due to its functional and nontoxic properties on neuronal primary culture, can be utilized for future therapeutic interventions for neurodegeneration.


Asunto(s)
Biflavonoides/farmacología , Señalización del Calcio/efectos de los fármacos , Catequina/farmacología , N-Metilaspartato/efectos adversos , Neuronas/metabolismo , Olea/química , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Biflavonoides/química , Catequina/química , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ratones , N-Metilaspartato/farmacología , Neuronas/patología , Extractos Vegetales/química , Proantocianidinas/química
11.
J Toxicol Sci ; 45(5): 261-269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32404558

RESUMEN

This study was aimed to investigate morphological alteration of the retina with N-methyl-D-aspartate (NMDA)-induced injury in rabbits by optical coherence tomography (OCT). The right and left eyes of a total of 12 rabbits received single-intravitreal injection of vehicle and NMDA, respectively. Four out of the 12 animals underwent OCT and quantification of plasma microRNA repeatedly (4, 48, and 168 hr after dosing), followed by ocular histopathology at the end of the study. Ocular histopathology was also conducted in the eyes collected 4 or 48 hr after dosing from 4 animals at each time period. OCT revealed hyper-reflective ganglion cell complex and thickened inner retina in NMDA-treated eyes 4 hr after dosing; the inner retina shifted to thinning at later time points. The eyes given NMDA also exhibited greater thickness of the outer retina, which contains photoreceptors, after treatment, and thickened and obscured ellipsoid zone 168 hr after dosing. The plasma levels of miR-182 and miR-183, which are known to be highly expressed in photoreceptors, were higher 4 hr after dosing than pre-dosing values. Histopathologically, NMDA-induced inner retinal damage was confirmed: single-cell necrosis was observed in the ganglion cell layer and the inner nuclear layer 4 hr after dosing, the incidence of which decreased thereafter. At 168 hr after dosing, reduced number of ganglion cells was noted. No change was histopathologically observed in the outer retina. In conclusion, our results suggest involvement of photoreceptors in NMDA-induced inner retinal injury. Additionally, OCT revealed acute inner retinal findings suggestive of temporary edema.


Asunto(s)
N-Metilaspartato/efectos adversos , N-Metilaspartato/toxicidad , Células Ganglionares de la Retina/efectos de los fármacos , Segmento Interno de las Células Fotorreceptoras Retinianas/efectos de los fármacos , Tomografía de Coherencia Óptica , Administración Intravesical , Animales , MicroARNs/sangre , N-Metilaspartato/administración & dosificación , Conejos , Células Ganglionares de la Retina/patología , Segmento Interno de las Células Fotorreceptoras Retinianas/patología , Factores de Tiempo
12.
Sci Rep ; 10(1): 4251, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144342

RESUMEN

In glaucoma, retinal ganglion cells are damaged, leading to the progressive constriction of the visual field. We have previously shown that the valosin-containing protein (VCP) modulators, Kyoto University Substance (KUS)121 and KUS187, prevent the death of retinal ganglion cells in animal models of glaucoma, including the one generated by N-methyl-D-aspartate (NMDA)-induced neurotoxicity. KUSs appeared to avert endoplasmic reticulum (ER) stress by maintaining ATP levels, resulting in the protection of ganglion cells from cell death. To further elucidate the protective mechanisms of KUSs, we examined gene expression profiles in affected ganglion cells. We first injected KUS-treated mice with NMDA and then isolated the affected retinal ganglion cells using fluorescence-activated cell sorting. Gene expression in the cells was quantified using a next-generation sequencer. Resultantly, we found that KUS121 upregulated several genes involved in energy metabolism. In addition, we observed the upregulation of Zfp667, which has been reported to suppress apoptosis-related genes and prevent cell death. These results further support the suitability of KUS121 as a therapeutic drug in protecting retinal ganglion cells in ophthalmic disorders, such as glaucoma.


Asunto(s)
Susceptibilidad a Enfermedades , Enfermedades de la Retina/etiología , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Transcriptoma , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Enfermedad Aguda , Animales , Apoptosis , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Metabolismo Energético , Perfilación de la Expresión Génica , Ontología de Genes , Inmunofenotipificación , Redes y Vías Metabólicas , Ratones , N-Metilaspartato/efectos adversos , Enfermedades de la Retina/patología
13.
Neuroreport ; 31(6): 478-483, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32168097

RESUMEN

Progranulin (PGRN) is a glycoprotein that is widely expressed among organs, including the central nervous system. PGRN insufficiency is involved in various neurodegenerative disorders such as frontotemporal dementia, Alzheimer's disease, and neuronal ceroid lipofuscinosis. One of the major causes of neuronal damage is hyperactivation of the cerebrum triggered by upregulation of excitatory systems. In the present study, we examined the possible involvement of PGRN in modulating excitability of the cerebrum using wild type and PGRN-deficient mice. First, we treated wild type and PGRN-deficient mice with seizure-inducible drugs, bicuculline or N-methyl-D-aspartate (NMDA), which provoke hyperexcitement of neurons. PGRN-deficient mice showed higher intensity of seizure and longer duration of convulsive behavior when treated with either bicuculline or NMDA. Next, we quantified the expression of NMDA receptor subunits in the hippocampus and cerebral cortex. The expression level of NR2A subunit protein was significantly higher in the hippocampus of PGRN-deficient mice, while no difference was observed in the cerebral cortex. On the other hand, mRNA levels of NMDA receptor subunits in the hippocampus were comparable or even lower in PGRN-deficient mice. These results suggest that PGRN modulates the excitability of the cerebrum by regulating at least partially the protein level of NMDA receptors in the hippocampus.


Asunto(s)
Bicuculina/efectos adversos , Convulsivantes/efectos adversos , N-Metilaspartato/efectos adversos , Progranulinas/metabolismo , Convulsiones/genética , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Progranulinas/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo
14.
Sci Rep ; 9(1): 15981, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690738

RESUMEN

The Na/HCO3 cotransporter NBCn1/SLC4A7 can affect glutamate neurotoxicity in primary cultures of rat hippocampal neurons. Here, we examined NMDA-induced neurotoxicity in NBCn1 knockout mice to determine whether a similar effect also occurs in the mouse brain. In primary cultures of hippocampal neurons from knockouts, NMDA had no neurotoxic effects, determined by lactate dehydrogenase release and nitric oxide synthase (NOS)-dependent cGMP production. Male knockouts and wildtypes (6-8 weeks old) were then injected with NMDA (75 mg/kg; ip) and hippocampal neuronal damages were assessed. Wildtypes developed severe tonic-clonic seizures, whereas knockouts had mild seizure activity (motionless). In knockouts, the NOS activity, caspase-3 expression/activity and the number of TUNEL-positive cells were significantly low. Immunochemical analysis revealed decreased expression levels of the NMDA receptor subunit GluN1 and the postsynaptic density protein PSD-95 in knockouts. Extracellular recording from hippocampal slices showed no Mg2+/NMDA-mediated epileptiform events in knockouts. In conclusion, these results show a decrease in NMDA neurotoxicity by NBCn1 deletion. Given that acid extrusion has been known to prevent pH decrease and protect neurons from acid-induced damage, our study presents novel evidence that acid extrusion by NBCn1 stimulates neurotoxicity.


Asunto(s)
Hipocampo/metabolismo , N-Metilaspartato/efectos adversos , Síndromes de Neurotoxicidad/prevención & control , Convulsiones/prevención & control , Simportadores de Sodio-Bicarbonato/genética , Animales , GMP Cíclico/metabolismo , Eliminación de Gen , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/metabolismo , Neuronas/citología , Neuronas/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Óxido Nítrico Sintasa/metabolismo , Convulsiones/etiología , Convulsiones/genética , Convulsiones/metabolismo , Simportadores de Sodio-Bicarbonato/deficiencia
15.
J Steroid Biochem Mol Biol ; 189: 195-203, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872014

RESUMEN

A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity. Pretreatment with neurosteroids significantly reduced acute L-glutamic acid or NMDA excitotoxicity mediated by Ca2+ entry and consequent ROS (reactive oxygen species) release and caspase-3 activation. Compounds 6 (IC50 = 5.8 µM), 7 (IC50 = 12.2 µM), 9 (IC50 = 7.8 µM), 13 (IC50 = 1.1 µM) and 16 (IC50 = 8.2 µM) attenuated glutamate-induced Ca2+ entry more effectively than memantine (IC50 = 18.9 µM). Moreover, compound 13 shows comparable effect with MK-801 (IC50 = 1.2 µM) and also afforded significant protection without any adverse effect upon prolonged exposure. This drop in Ca2+ level resulted in corresponding ROS suppression and prevented glutamate-induced caspase-3 activation. Therefore, compound 13 has great potential for development into a therapeutic agent for improving glutamate-related nervous system diseases.


Asunto(s)
Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Neurotransmisores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Células Cultivadas , Ácido Glutámico/efectos adversos , N-Metilaspartato/efectos adversos , Neuronas/citología , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Neurotransmisores/química , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Mol Vis ; 24: 495-508, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090013

RESUMEN

Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU. Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01). Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , N-Metilaspartato/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Taurina/análogos & derivados , Taurina/farmacología , Animales , Apoptosis/efectos de los fármacos , Esquema de Medicación , Inyecciones Intravítreas , Masculino , N-Metilaspartato/efectos adversos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Nitrosativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Transducción de Señal , Tirosina/análogos & derivados , Tirosina/antagonistas & inhibidores , Tirosina/metabolismo
17.
PLoS One ; 13(7): e0200659, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001411

RESUMEN

Excitotoxic lesions are frequently used to assess the role of cerebral structures in cognitive processes in rodents. However, the precise site and extent of these lesions remain unknown without histological verifications. Using a 7-Teslas MRI system and a T2-weighted turbo-RARE sequence, MR images were acquired at several time points following NMDA lesions (1h, 6h, 24h, 48h, 1 week and 2 weeks). NMDA infusions into the parenchyma induced a clear and delineable hyperintense signal from 1h up to 1-week post-surgery. Hyperintensity volumes were compared with NeuN and Cresyl violet histological quantifications of the lesion magnitude. NMDA-induced hypersignal is observed as soon as 1h post-injection and is a reliable estimate of the presence (or absence) of a lesion. Compared to NeuN, Cresyl violet staining underestimates the extent of the lesion in significant proportions. The MRI hyperintensity generated by NMDA instillation into the parenchyma can be used as a powerful tool to confirm the diffusion of the drug into the cerebral tissue, to ascertain the locus of injection and predict with a high success rate the fate of NMDA lesions as soon as 1h post-surgery. This approach could be very useful in a large variety of lesion studies in rodents.


Asunto(s)
Cerebelo/diagnóstico por imagen , Cognición/efectos de los fármacos , Imagen por Resonancia Magnética , N-Metilaspartato/efectos adversos , Síndromes de Neurotoxicidad/diagnóstico por imagen , Animales , Cerebelo/fisiopatología , Masculino , N-Metilaspartato/farmacología , Síndromes de Neurotoxicidad/fisiopatología , Ratas , Ratas Long-Evans
18.
J Addict Med ; 12(3): 247-251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29401155

RESUMEN

: Novel psychoactive substance use is a major social concern. Their use may elicit or uncover unpredictably as yet undescribed clinical pictures. We aimed to illustrate a multisubstance use case indistinguishable from paranoid schizophrenia, so to alert clinicians on possibly misdiagnosing substance-induced psychotic disorders. CASE REPORT: We describe a case of a 32-year-old man who started at 18 years with cannabinoids and ketamine, and is currently using N-methyl-D-aspartate (NMDA) antagonists. At age 23, he developed social withdrawal after being assaulted by a stranger, but did not consult psychiatrists until age 26; during this period, he was using internet-purchased methoxetamine and ketamine, and was persecutory, irritable, suspicious, and insomniac and discontinued all received medical prescriptions. He added dextromethorphan to his list of used substances. At age 31, while using phencyclidine, and, for the first time, methoxphenidine, he developed a religious delusion, involving God calling him to reach Him, and the near-death experiences ensured by NMDA antagonists backed his purpose. He received Diagnostic and Statistical Manual of Mental Disorders, 5th Edition diagnosis of multisubstance-induced psychotic disorder and was hospitalized 8 times, 6 of which after visiting the emergency room due to the development of extreme anguish, verbal and physical aggression, and paranoia. He reportedly used methoxphenidine, methoxyphencyclidine, ethylnorketamine, norketamine, and deschlorketamine, to achieve near-death experiences, and eventually to reach God in heavens. CONCLUSIONS: This case points to the need for better control of drugs sold on the internet. It also illustrates that people using NMDA antagonists may present clinical pictures indistinguishable from those of major psychoses and are likely to be misdiagnosed.


Asunto(s)
N-Metilaspartato/antagonistas & inhibidores , Psicosis Inducidas por Sustancias/tratamiento farmacológico , Adulto , Ciclohexanonas/efectos adversos , Ciclohexilaminas/efectos adversos , Muerte , Deluciones/inducido químicamente , Dextrometorfano/efectos adversos , Diagnóstico Diferencial , Humanos , Ketamina/efectos adversos , Ketamina/análogos & derivados , Masculino , N-Metilaspartato/efectos adversos , Disponibilidad de Medicamentos Vía Internet , Piperidinas/efectos adversos , Psicosis Inducidas por Sustancias/diagnóstico , Esquizofrenia Paranoide
19.
Sci Rep ; 7(1): 6885, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761134

RESUMEN

We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.


Asunto(s)
Calpaína/metabolismo , Hesperidina/administración & dosificación , N-Metilaspartato/efectos adversos , Fármacos Neuroprotectores/administración & dosificación , Enfermedades de la Retina/tratamiento farmacológico , Células Ganglionares de la Retina/citología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Potenciales Evocados Visuales/efectos de los fármacos , Hesperidina/farmacología , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética
20.
Molecules ; 22(3)2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28264448

RESUMEN

Paeoniflorin (PF) is an active ingredient of Paeoniae Radix which possesses the neuroprotective effect. However, so far, the neuroprotective mechanism of PF has still not been fully uncovered. The Ca2+/Ca2+/calmodulin-dependent protein kinase II (CaMKII)/cAMP response element-binding (CREB) signaling pathway plays an important role in the intracellular signal transduction pathway involved in cell proliferation, cell survival, inflammation and metabolism. Herein, the neuroprotective roles of PF in the models of middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and N-methyl-d-aspartic acid (NMDA)-induced excitotoxicity in primary hippocampal neurons were investigated. Moreover, we attempted to confirm the hypothesis that its protection effect is via the modulation of the Ca2+/CaMKI)/CREB signaling pathway. In this study, PF not only significantly decreased neurological deficit scores and infarct volume in vivo, but also improved neurons' cell viability, and inhibited neurons' apoptosis and intracellular Ca2+ concentration in vitro. Furthermore, PF significantly up-regulated p-CREB and p-CaMKII, and down-regulated calmodulin (CaM) in vivo and in vitro. The results indicate that the protective effect of PF on cerebral ischemia reperfusion injury is possible through regulating the Ca2+/CaMKII/CREB signaling pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucósidos/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Monoterpenos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/etiología , Infarto de la Arteria Cerebral Media/metabolismo , Monoterpenos/farmacología , N-Metilaspartato/efectos adversos , Fármacos Neuroprotectores/farmacología , Ratas , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...