Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 3(6): 753-767, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35449309

RESUMEN

Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.


Asunto(s)
ADN Metiltransferasa 3A , N-Metiltransferasa de Histona-Lisina , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Metiltransferasa 3A/genética , Metilasas de Modificación del ADN/genética , Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metiltransferasas/genética , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/secundario
2.
Nat Struct Mol Biol ; 29(2): 85-96, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102319

RESUMEN

Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-61 is physiologically relevant.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Animales Modificados Genéticamente , Biocatálisis , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Metilación , Modelos Biológicos , Mutación , Transcripción Genética
3.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893559

RESUMEN

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fertilidad/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , Longevidad/genética , Proteínas Nucleares/deficiencia , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catálisis , Activación Enzimática , Histonas/metabolismo , Metilación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Biosci Rep ; 41(11)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34724040

RESUMEN

Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis screened out several important pathways affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of ß-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation activity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown cells. In summary, the present study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/ß-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.


Asunto(s)
Células Epiteliales/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/deficiencia , Proteína de la Leucemia Mieloide-Linfoide/genética , Diente/metabolismo , Vía de Señalización Wnt/genética , Animales , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Línea Celular , Proliferación Celular/genética , Ciclina D1/metabolismo , Células Epiteliales/citología , Histonas/metabolismo , Cloruro de Litio/farmacología , Ratones , Ratones Endogámicos ICR , Diente Molar/metabolismo , Diente/citología , Vía de Señalización Wnt/efectos de los fármacos
5.
Nature ; 590(7846): 504-508, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536620

RESUMEN

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Nucleares/metabolismo , Animales , Biocatálisis , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Femenino , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilación , Ratones , Modelos Moleculares , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619101

RESUMEN

Hotspot histone H3 mutations have emerged as drivers of oncogenesis in cancers of multiple lineages. Specifically, H3 lysine 36 to methionine (H3K36M) mutations are recurrently identified in chondroblastomas, undifferentiated sarcomas, and head and neck cancers. While the mutation reduces global levels of both H3K36 dimethylation (H3K36me2) and trimethylation (H3K36me3) by dominantly inhibiting their respective specific methyltransferases, the relative contribution of these methylation states to the chromatin and phenotypic changes associated with H3K36M remains unclear. Here, we specifically deplete H3K36me2 or H3K36me3 in mesenchymal cells, using CRISPR-Cas9 to separately knock out the corresponding methyltransferases NSD1/2 or SETD2. By profiling and comparing the epigenomic and transcriptomic landscapes of these cells with cells expressing the H3.3K36M oncohistone, we find that the loss of H3K36me2 could largely recapitulate H3.3K36M's effect on redistribution of H3K27 trimethylation (H3K27me3) and gene expression. Consistently, knockout of Nsd1/2, but not Setd2, phenocopies the differentiation blockade and hypersensitivity to the DNA-hypomethylating agent induced by H3K36M. Together, our results support a functional divergence between H3K36me2 and H3K36me3 and their nonredundant roles in H3K36M-driven oncogenesis.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Antimetabolitos Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Línea Celular , Cromatina/química , Cromatina/metabolismo , Citarabina/farmacología , Decitabina/farmacología , Edición Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Lisina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Metilación/efectos de los fármacos , Ratones , Mutación , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transcriptoma/efectos de los fármacos
7.
Biochem Biophys Res Commun ; 558: 202-208, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33036756

RESUMEN

The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.


Asunto(s)
Actinas/metabolismo , Carcinoma de Células Renales/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Renales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia/genética , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología
8.
Hepatology ; 73(5): 1797-1815, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058300

RESUMEN

BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.


Asunto(s)
Carcinoma Hepatocelular/etiología , N-Metiltransferasa de Histona-Lisina/deficiencia , Metabolismo de los Lípidos , Neoplasias Hepáticas/etiología , Hígado/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Colesterol/sangre , Inmunoprecipitación de Cromatina , Edición Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/sangre
9.
BMC Med Genomics ; 13(1): 181, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276791

RESUMEN

BACKGROUND: Wolf-Hirschhorn syndrome is a well-characterized genomic disorder caused by 4p16.3 deletions. Wolf-Hirschhorn syndrome patients exhibit characteristic facial dysmorphism, growth retardation, developmental delay, intellectual disability and seizure disorders. Recently, NSD2 gene located within the 165 kb Wolf-Hirschhorn syndrome critical region was identified as the key causal gene responsible for most if not all phenotypes of Wolf-Hirschhorn syndrome. So far, eight NSD2 loss of function variants have been reported in patients from different parts of the world, all were de novo variants. METHODS: In our study, we performed whole exome sequencing for two patients from one family. We also reviewed more NSD2 mutation cases in pervious literature. RESULTS: A novel loss of function NSD2 variant, c.1577dupG (p.Asn527Lysfs*14), was identified in a Chinese family in the proband and her father both affected with intellectual disability. After reviewing more NSD2 mutation cases in pervious literature, we found none of them had facial features that can be recognized as Wolf-Hirschhorn syndrome. In addition, we have given our proband growth hormone and followed up with this family for 7.5 years. CONCLUSIONS: Here we reported the first familial NSD2 variant and the long-term effect of growth hormone therapy for patients. Our results suggested NSD2 mutation might cause a distinct intellectual disability and short stature syndrome.


Asunto(s)
Facies , N-Metiltransferasa de Histona-Lisina/genética , Terapia de Reemplazo de Hormonas , Hormona de Crecimiento Humana/uso terapéutico , Mutación con Pérdida de Función , Proteínas Represoras/genética , Síndrome de Wolf-Hirschhorn/genética , Pueblo Asiatico/genética , Preescolar , Enanismo/tratamiento farmacológico , Enanismo/genética , Femenino , Estudios de Seguimiento , Trastornos del Crecimiento/tratamiento farmacológico , Trastornos del Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Linaje , Fenotipo , Proteínas Represoras/deficiencia , Resultado del Tratamiento , Secuenciación del Exoma , Síndrome de Wolf-Hirschhorn/tratamiento farmacológico
10.
Nat Genet ; 52(10): 1088-1098, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929285

RESUMEN

De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Espermatogénesis/genética , Animales , Metilación de ADN/genética , ADN Metiltransferasa 3A , Femenino , N-Metiltransferasa de Histona-Lisina/deficiencia , Histonas/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteínas del Grupo Polycomb/genética , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo , Factores de Transcripción/genética
11.
Cell Rep ; 32(11): 108126, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937141

RESUMEN

SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.


Asunto(s)
Conducta Animal , N-Metiltransferasa de Histona-Lisina/deficiencia , Esquizofrenia/fisiopatología , Sinapsis/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Ratones Endogámicos ICR , Mutación/genética , Trastornos del Neurodesarrollo/genética , Corteza Prefrontal/metabolismo , Terminales Presinápticos/fisiología , Células Piramidales/metabolismo , Esquizofrenia/genética , Conducta Social
12.
Cells ; 9(8)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781660

RESUMEN

The methylation of histone H3 at lysine 79 is a feature of open chromatin. It is deposited by the conserved histone methyltransferase DOT1. Recently, DOT1 localization and H3K79 methylation (H3K79me) have been correlated with enhancers in C. elegans and mammalian cells. Since earlier research implicated H3K79me in preventing heterochromatin formation both in yeast and leukemic cells, we sought to inquire whether a H3K79me deficiency would lead to higher levels of heterochromatic histone modifications, specifically H3K9me2, at developmental enhancers in C. elegans. Therefore, we used H3K9me2 ChIP-seq to compare its abundance in control and dot-1.1 loss-of-function mutant worms, as well as in rde-4; dot-1.1 and rde-1; dot-1.1 double mutants. The rde-1 and rde-4 genes are components of the RNAi pathway in C. elegans, and RNAi is known to initiate H3K9 methylation in many organisms, including C. elegans. We have previously shown that dot-1.1(-) lethality is rescued by rde-1 and rde-4 loss-of-function. Here we found that H3K9me2 was elevated in enhancer, but not promoter, regions bound by the DOT-1.1/ZFP-1 complex in dot-1.1(-) worms. We also found increased H3K9me2 at genes targeted by the ALG-3/4-dependent small RNAs and repeat regions. Our results suggest that ectopic H3K9me2 in dot-1.1(-) could, in some cases, be induced by small RNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Animales , Caenorhabditis elegans/genética , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/deficiencia , Metilación , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Interferencia de ARN
13.
Commun Biol ; 3(1): 278, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483278

RESUMEN

Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.


Asunto(s)
Anomalías Múltiples/genética , Agresión , Anomalías Craneofaciales/genética , Espinas Dendríticas/metabolismo , Trastornos del Crecimiento/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Hipertricosis/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Modelos Animales de Enfermedad , Histona Demetilasas/deficiencia , N-Metiltransferasa de Histona-Lisina/deficiencia , Masculino , Metilación , Ratones , Proteína de la Leucemia Mieloide-Linfoide/deficiencia
14.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360551

RESUMEN

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático/enzimología , Transformación Celular Neoplásica/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Pancreáticas/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
15.
Mol Brain ; 13(1): 85, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471461

RESUMEN

Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation. Conditional inactivation of DOT1L using Wnt1-cre as driver (Dot1l-cKO) showed that DOT1L expression is essential for spinal cord neurogenesis and localization of diverse neuronal subtypes, similar to its function in the development of the cerebral cortex and cerebellum. Transcriptome analysis revealed that DOT1L deficiency favored differentiation over progenitor proliferation. Dot1l-cKO mainly decreased the numbers of dI1 interneurons expressing Lhx2. In contrast, Lhx9 expressing dI1 interneurons did not change in numbers but localized differently upon Dot1l-cKO. Similarly, loss of DOT1L affected localization but not generation of dI2, dI3, dI5, V0 and V1 interneurons. The resulting derailed interneuron patterns might be responsible for increased cell death, occurrence of which was restricted to the late developmental stage E18.5. Together our data indicate that DOT1L is essential for subtype-specific neurogenesis, migration and localization of dorsal and ventral interneurons in the developing spinal cord, in part by regulating transcriptional activation of Lhx2.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Movimiento Celular , Proliferación Celular , Pollos , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones Transgénicos , Neurogénesis/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína Wnt1/metabolismo
16.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32202636

RESUMEN

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Asunto(s)
Anemia Refractaria con Exceso de Blastos/patología , Calgranulina B/fisiología , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/fisiología , Leucemia Mieloide Aguda/etiología , Anemia Refractaria con Exceso de Blastos/genética , Anemia Refractaria con Exceso de Blastos/metabolismo , Animales , Calgranulina B/biosíntesis , Calgranulina B/genética , Transformación Celular Neoplásica , Células Cultivadas , Decitabina/farmacología , Regulación hacia Abajo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Código de Histonas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/biosíntesis , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Síndromes Mielodisplásicos/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Pronóstico , Proteínas Recombinantes/uso terapéutico , Factores de Tiempo , Análisis de Matrices Tisulares , Transcriptoma
17.
Nature ; 579(7797): 118-122, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103178

RESUMEN

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Epigénesis Genética , Envejecimiento Saludable/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores Generales de Transcripción/metabolismo , Envejecimiento/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Cognición , Disfunción Cognitiva , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/metabolismo , Humanos , Longevidad/genética , Lisina/metabolismo , Masculino , Memoria , Metilación , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas/genética , Interferencia de ARN , Aprendizaje Espacial , Factores Generales de Transcripción/deficiencia , Factores Generales de Transcripción/genética
18.
Cell Death Dis ; 11(1): 69, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988284

RESUMEN

Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5-ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Carcinoma de Células Renales/genética , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias Renales/genética , Empalme Alternativo/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Mutación , Pronóstico , ARN Interferente Pequeño
19.
Cell Rep ; 30(1): 173-186.e6, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914384

RESUMEN

Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Red Nerviosa/metabolismo , Animales , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Anomalías Craneofaciales/genética , Desarrollo Embrionario/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Cardiopatías Congénitas/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibición Neural , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Ratas Wistar , Sinapsis/metabolismo
20.
Cell Death Differ ; 27(4): 1243-1258, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31515511

RESUMEN

Acute liver injury is commonly caused by bacterial endotoxin/lipopolysaccharide (LPS), and by drug overdose such as acetaminophen (APAP). The exact role of epigenetic modification in acute liver injury remains elusive. Here, we investigated the role of histone methyltransferase G9a in LPS- or APAP overdose-induced acute liver injury. Under D-galactosamine sensitization, liver-specific G9a-deficient mice (L-G9a-/-) exhibited 100% mortality after LPS injection, while the control and L-G9a+/- littermates showed very mild mortality. Moreover, abrogation of hepatic G9a or inhibiting the methyltransferase activity of G9a aggravated LPS-induced liver damage. Similarly, under sublethal APAP overdose, L-G9a-/- mice displayed more severe liver injury. Mechanistically, ablation of G9a inhibited H3K9me1 levels at the promoters of Gstp1/2, two liver detoxifying enzymes, and consequently suppressed their transcription. Notably, treating L-G9a-/- mice with recombinant mouse GSTP1 reversed the LPS- or APAP overdose-induced liver damage. Taken together, we identify a novel beneficial role of G9a-GSTP1 axis in protecting against acute liver injury.


Asunto(s)
Gutatión-S-Transferasa pi/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Hígado/lesiones , Hígado/metabolismo , Acetaminofén , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Daño del ADN , Galactosa , Eliminación de Gen , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , N-Metiltransferasa de Histona-Lisina/deficiencia , Histonas/metabolismo , Humanos , Inflamación/patología , Lipopolisacáridos , Hígado/efectos de los fármacos , Hígado/patología , Lisina/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...