RESUMEN
This study explores the potential of natural bioactive peptides from animal venoms as targeted anti-cancer agents with reduced toxicity. Initially, we screened a broad collection of animal venoms for their antiproliferative activity against cancer cell lines. From this collection, we selected venoms from Naja anchietae and Naja senegalensis due to their promising activity. Utilizing reverse- phase high-performance liquid chromatography (RP HPLC), mass spectrometry (MALDI-TOF MS and MALDI-TOF TOF MSMS), and Edman degradation sequencing, we isolated and characterized three peptides named CTNanc1, CTNanc2, and CTNanc3 from Naja anchietae, and three others named CTNsen1, CTNsen2, and CTNsen3 from Naja senegalensis, each with a molecular weight of around 7 kDa. These purified peptides demonstrated inhibition of U87 glioblastoma cell proliferation, but not of U251 and T98G cells, in cell viability assays. To assess the impact of these treatments on cell viability, apoptosis, and necrosis, flow cytometry assays were conducted on U87 cells at 72 h. The results showed a decrease in cell viability and an increase in dead cells, suggesting that the treatments not only promote apoptosis, but may also lead to increased necrosis or late-stage apoptosis as the exposure time increases. These findings suggest that these peptides could be developed as leads for cancer therapy.
Asunto(s)
Antineoplásicos , Proliferación Celular , Supervivencia Celular , Venenos Elapídicos , Glioblastoma , Naja , Péptidos , Animales , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Línea Celular Tumoral , Venenos Elapídicos/farmacología , Venenos Elapídicos/química , Proliferación Celular/efectos de los fármacos , Péptidos/farmacología , Péptidos/aislamiento & purificación , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Asunto(s)
Venenos Elapídicos , Naja , Animales , Venenos Elapídicos/toxicidad , Venenos Elapídicos/enzimología , Humanos , Ratones , Supervivencia Celular/efectos de los fármacos , Calcio/metabolismo , Neurotoxinas/toxicidad , Proteómica , Línea Celular Tumoral , Fosfolipasas A2/toxicidad , Fosfolipasas A2/metabolismo , Serpientes VenenosasRESUMEN
Naja species bite is the commonest cause for consultation to Remote Envenomation Consultancy Services in Malaysia. Envenomation by Naja species may result in neuroparalysis and cardiotoxic effects including arrhythmias, hypertension, tachycardia, atrioventricular blocks, ventricular tachycardia, and ventricular fibrillation. We report a case of cardiotoxicity as an early manifestation following an equatorial spitting cobra, Naja sumatrana bite, preceding early paralytic envenomation manifestation. A 14-year-old boy presented to an emergency department with mild local envenomation. ECG showed multiple ventricular premature complexes. Subsequently patient developed ptosis. Complete resolution of ptosis and resumption of normal sinus rhythm occurred following administration of the appropriate antivenom. The patient was discharged well after two days of hospitalization. The patient's ECG findings and neurotoxic manifestation suggested acute systemic envenomation. High index of suspicion for cardiotoxicity with close serial monitoring is recommended to ensure timely administration of antivenom.
Asunto(s)
Antivenenos , Venenos Elapídicos , Mordeduras de Serpientes , Complejos Prematuros Ventriculares , Masculino , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Adolescente , Antivenenos/uso terapéutico , Complejos Prematuros Ventriculares/inducido químicamente , Venenos Elapídicos/toxicidad , Electrocardiografía , Malasia , Naja , Cardiotoxicidad/etiología , Blefaroptosis/inducido químicamenteRESUMEN
Snake venoms are comprised of bioactive proteins and peptides that facilitate severe snakebite envenomation symptoms. A comprehensive understanding of venom compositions and the subtle heterogeneity therein is important. While bottom-up proteomics has been the well-established approach to catalogue venom compositions, top-down proteomics has emerged as a complementary strategy to characterize venom heterogeneity at the intact protein level. However, top-down proteomics has not been as widely implemented in the snake venom field as bottom-up proteomics, with various emerging top-down methods yet to be developed for venom systems. Here, we have explored three main top-down mass spectrometry methodologies in a proof-of-concept study to characterize selected three-finger toxin and phospholipase A2 proteoforms from the forest cobra (Naja melanoleuca) venom. We demonstrated the utility of a data-independent acquisition mode "MSE" for untargeted fragmentation on a chromatographic time scale and its improvement in protein sequence coverage compared to conventional targeted tandem mass spectrometry analysis. We also showed that protein identification can be further improved using a hybrid fragmentation approach, combining electron-capture dissociation and collision-induced dissociation. Lastly, we reported the promising application of multifunctional cyclic ion mobility separation and post-ion mobility fragmentation on snake venom proteins for the first time.
Asunto(s)
Venenos Elapídicos , Fosfolipasas A2 , Proteómica , Animales , Venenos Elapídicos/química , Venenos Elapídicos/análisis , Proteómica/métodos , Fosfolipasas A2/química , Fosfolipasas A2/análisis , Fosfolipasas A2/metabolismo , Espectrometría de Masas en Tándem/métodos , Naja , Secuencia de Aminoácidos , Espectrometría de Masas/métodos , Serpientes VenenosasRESUMEN
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.
Asunto(s)
Venenos Elapídicos , Elapidae , Naja , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Venenos Elapídicos/toxicidad , Venenos Elapídicos/química , Venenos Elapídicos/análisis , Coagulación Sanguínea/efectos de los fármacos , Cromatografía de Fase Inversa , Ophiophagus hannahRESUMEN
Snakebite envenoming (SBE) remains a severely neglected public health issue, particularly affecting tropical and subtropical regions, with Africa experiencing an estimated 435,000 to 580,000 snakebites annually, leading to high morbidity and mortality rates, especially across Africa and Asia. Recognized as a Neglected Tropical Disease, SBE management is further complicated by the inadequate efficacy of current antivenom treatments. Of particular concern are cobras (Naja sp.), whose neurotoxins can induce rapid fatal respiratory paralysis. In this study, we investigate the potential of nanobodies as a promising next-generation of immunotherapeutics against cobra venoms. Through a dual strategy of the characterization of venom toxic fractions from cobras captured for the first time in Algeria and Tunisia biotopes, coupled with in vitro assays to evaluate their interactions with acetylcholine receptors, and subsequent immunization of dromedaries to produce specific nanobodies, we identified two lethal fractions, F5 and F6, from each venom, and selected five nanobodies with significant binding and neutralizing of 3DL50 (0.74 mg/kg). The combination of these nanobodies demonstrated a synergistic effect, reaching 100% neutralizing efficacy of 2DL50 lethal venom fraction (0.88 mg/kg) doses in mice. Additionally, our findings highlighted the complex mechanism of cobra venom action through the lethal synergism among its major toxins.
Asunto(s)
Anticuerpos Neutralizantes , Antivenenos , Venenos Elapídicos , Anticuerpos de Dominio Único , Animales , Venenos Elapídicos/inmunología , Venenos Elapídicos/toxicidad , Anticuerpos de Dominio Único/inmunología , Antivenenos/inmunología , Antivenenos/farmacología , Ratones , Anticuerpos Neutralizantes/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Naja naja , Camelus/inmunología , África del Norte , Naja , MasculinoRESUMEN
Three-finger proteins are the most abundant toxins in the venom of Naja ashei, a snake species from the Elapidae family. This research aimed to describe the effects of varying charges of these proteins, isolated from Naja ashei venom using SEC and IEX chromatography. The study examined how differently charged three-finger toxin fractions interact with and affect neuroblastoma (SK-N-SH) and promyeloblast (HL-60) cells, as well as model Langmuir membranes and liposomes designed to mimic cellular lipid composition. Findings revealed that protein surface charges significantly impact cell survival (MTT assay), membrane damage (lactate dehydrogenase release, malondialdehyde formation), and the structural and electrochemical properties of model membranes (Langmuir membranes and zeta potential for liposomes and cancer cell lines). Results indicated that SK-N-SH cells, characterized by a higher negative charge on their cell membranes, interacted more effectively with positively charged toxins than HL-60 cells. However, the mechanism of these electrostatic interactions is complex. The research demonstrated that electrostatic and mechanical membrane modifications induced by venom proteins can significantly affect cell metabolism. Additionally, the total charge of the membrane, influenced by polar lipid components and phospholipid saturation, plays a decisive role in toxin interaction.
Asunto(s)
Membrana Celular , Venenos Elapídicos , Humanos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Venenos Elapídicos/química , Animales , Naja , Línea Celular Tumoral , Células HL-60 , Supervivencia Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Liposomas/química , Neuroblastoma/patología , Neuroblastoma/metabolismoRESUMEN
Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.
Asunto(s)
Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Fosfolipasas A2 , Fitoquímicos , Hojas de la Planta , Vernonia , Fitoquímicos/farmacología , Fitoquímicos/química , Hojas de la Planta/química , Animales , Vernonia/química , Fosfolipasas A2/farmacología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Naja , Cumarinas/farmacología , Cumarinas/química , Inhibidores de Fosfolipasa A2/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación por Computador , LupanosRESUMEN
African cobras (Naja species) represent one of the most encountered medically important snakes in Africa. They are classified as African spitting (Afronaja subgenus) and non-spitting cobras (Uraeus and Boulengerina subgenera) with similar and different characteristics. Snake venom toxins including three-finger toxin (3FTx), phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP) cause snakebite envenomation leading to morbidity and mortality. The profile of the proteome of African cobra venoms will help to develop safer and more effective antivenoms. The approval of Captopril by the US Food and Drug Administration (FDA) for the treatment of cardiovascular diseases, has led to intensified research towards possible use of venom toxins as therapeutics. In this review, we compare the venom proteome profile of 3 African Naja subgenera. In both Afronaja and Boulengerina subgenera, 3FTx (Afronaja-69.79%; Boulengerina-60.56%) followed by PLA2 (Afronaja-21.15%; Boulengerina-20.21%) dominated the venoms compared to the Uraeus subgenus dominated by 3FTx (84.55%) with little to no PLA2 abundance (0.8%). The venom of subgenus Uraeus was distinct from the other two subgenera by the almost total absence of PLA2, thus indicating little or no contribution of PLA2 in the envenomation caused by Uraeus compared to Afronaja and Boulengerina. Furthermore, we report studies on the experimental testing of African cobra venoms and toxins against diseases including anti-cancer properties.
Asunto(s)
Venenos Elapídicos , Proteoma , Animales , Venenos Elapídicos/química , Antivenenos/uso terapéutico , Naja , Fosfolipasas A2RESUMEN
BACKGROUND: Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa). METHODOLOGY/PRINCIPAL FINDINGS: Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies.
Asunto(s)
Antivenenos , Naja , Animales , Humanos , Antivenenos/farmacología , Naja/metabolismo , Proteómica , Estudios Prospectivos , Sudáfrica , Venenos Elapídicos/toxicidad , ProteínasRESUMEN
African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) µg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)µg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.
Asunto(s)
Antivenenos , Venenos Elapídicos , Necrosis , Mordeduras de Serpientes , Animales , Antivenenos/uso terapéutico , Antivenenos/farmacología , Ratones , Venenos Elapídicos/toxicidad , Mordeduras de Serpientes/tratamiento farmacológico , Modelos Animales de Enfermedad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Inflamación/tratamiento farmacológico , Dosificación Letal Mediana , Naja , Masculino , Creatina Quinasa/sangre , Riñón/efectos de los fármacos , Riñón/patologíaRESUMEN
A comprehensive investigation, incorporating both morphological and molecular analyses, has unveiled the existence of a hitherto unknown nematode species, Paracapillaria (Ophidiocapillaria) siamensis sp. nov., residing in the intestine of the monocled cobra, Naja kaouthia, in the central region of Thailand. This study integrates morphological characteristics, morphometric examination, scanning electron microscopy and molecular phylogenetic analysis (COI, 18S rRNA and ITS1 genes). The findings place the newly described species within the subgenus Ophidiocapillaria, elucidating its distinctive characteristics, including a frame-like proximal spicule shape, approximate lengths of 19 000 and 22 500 µm with approximate widths of 90 and 130 µm for males and females, 39â45 stichocytes, elevated lips without protrusion, a dorsal bacillary band stripe with an irregular pattern of bacillary cells and evidence of intestinal infection. These features serve to differentiate it from other species within the same subgenus, notably Paracapillaria (Ophidiocapillaria) najae De, , a species coexisting P. siamensis sp. nov. in the monocled cobra from the same locality. This study addresses the co-infection of the novel species and P. najae within the same snake host, marking the second documented instance of a paracapillariid species in the monocled cobra within the family Elapidae. The genetic characterization supports the formal recognition of P. siamensis sp. nov. as a distinct species, thereby underscoring its taxonomic differentiation within the Capillariidae family. This research identifies and characterizes the new nematode species, contributing valuable insights into the taxonomy of this nematode.
Asunto(s)
Filogenia , Animales , Tailandia , Masculino , Femenino , Microscopía Electrónica de Rastreo/veterinaria , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/análisis , Naja , Nematodos/clasificación , Nematodos/ultraestructura , Nematodos/genética , Nematodos/anatomía & histología , Intestinos/parasitología , ADN de HelmintosRESUMEN
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.
Asunto(s)
Acetatos , Venenos Elapídicos , Indoles , Cetoácidos , Necrosis , Mordeduras de Serpientes , Animales , Mordeduras de Serpientes/tratamiento farmacológico , Ratones , Humanos , Acrilamidas/farmacología , Fosfolipasas A2/metabolismo , Naja , Elapidae , Queratinocitos/efectos de los fármacos , Piel/efectos de los fármacos , Piel/patología , Reposicionamiento de MedicamentosRESUMEN
Catuneragam nilotica has been used in ethnomedicine to treat snakebite, inflammation, and diarrhea among others. The aim of this research is to isolate, and characterize potential potential phospholipase A2 (PLA2) inhibitors from the roots of C. nilotica. The plant material was collected, authenticated, and sequentially extracted using solvents of increasing polarity starting from n-hexane, ethyl acetate, and methanol. The extracts as reported in our previous work, were screened in vitro for their inhibitory activity against PLA2 enzyme from N. nigricollis venom using acidimetric assay. In line with the bio-activity guided isolation, methanol extract (being the most active) was subjected to chromatographic separation using silica gel and sephadex LH-20 which resulted in the isolation and characterization of scopoletin, and scopolin; the compounds were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 67.82 to 100.00 % and 65.76-93.15 %, respectively while the standard Antisnake Venom (ASV) had 74.96-85.04 % after 10 min incubation at 37 °C. The molecular docking of the compounds against PLA2 enzyme was performed using Auto Dock Vina while ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers; The findings indicated that both compounds were able to bind to the active site of PLA2 enzyme with high affinity (-6.5 to -6.2 kcal/mol) and they exhibited favorable drug-likeness and pharmacokinetic properties, and according to toxicity predictions, scopolin was found to be non-toxic (LD50 of 5000 mg/kg) while scopoletin has a slight chance of being toxic (LD50 of 3800 mg/kg). In conclusion, the findings of the research revealed that the roots of C. nilotica contains phytoconstituents with anti-PLA2 enzyme activity and thus, validates the ethnomedicinal claim of the use of the plant as herbal therapy against N. nigricollis envenomation.
Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de Fosfolipasa A2 , Fosfolipasas A2 , Raíces de Plantas , Escopoletina , Animales , Venenos Elapídicos/enzimología , Venenos Elapídicos/química , Naja , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Raíces de Plantas/química , Escopoletina/farmacología , Cumarinas/química , Cumarinas/farmacologíaRESUMEN
Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.
Asunto(s)
Venenos de Crotálidos , Naja , Serpientes Venenosas , Animales , Crotalus , Cardiotoxicidad , Venenos Elapídicos/toxicidad , Elapidae , Venenos de Crotálidos/toxicidadRESUMEN
Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.
Asunto(s)
Naja , Proteómica , Toxinas Biológicas , Serpientes Venenosas , Proteómica/métodos , Proteoma/análisis , Estructura Cuaternaria de Proteína , Venenos Elapídicos/química , Toxinas Biológicas/análisis , Venenos de Serpiente , Fosfolipasas A2/metabolismo , Antivenenos/farmacologíaRESUMEN
Naja nigricollis Venom (NnV) contains complex toxins that affects various vital systems functions after envenoming. The venom toxins have been reported to induce male reproductive disorders in envenomed rats. This present study explored the ameliorative potential of kaempferol on NnV-induced male reproductive toxicity. Fifty male wistar rats were sorted randomly into five groups (n = 10) for this study. Group 1 were noted as the control, while rats in groups 2 to 5 were injected with LD50 of NnV (1.0 mg/kg bw; i.p.). Group 2 was left untreated post envenomation while group 3 was treated with 0.2 ml of polyvalent antivenom. Groups 4 and 5 were treated with 4 and 8 mg/kg of kaempferol, respectively. NnV caused substantial reduction in concentrations of follicle stimulating hormone, testosterone and luteinizing hormone, while sperm motility, volume and counts significantly (p < 0.05) decreased in envenomed untreated rats. The venom enhanced malondialdehyde levels and substantially decreased glutathione levels, superoxide dismutase and glutathione peroxidase activities in the testes and epididymis of envenomed untreated rats. Additionally, epididymal and testicular myeloperoxidase activity and nitric oxide levels were elevated which substantiated severe morphological defects noticed in the reproductive organs. However, treatment of envenomed rats with kaempferol normalized the reproductive hormones with significant improvement on sperm functional parameters. Elevated inflammatory and oxidative stress biomarkers in testis and epididymis were suppressed post kaempferol treatment. Severe histopathological lesions in the epididymal and testicular tissues were ameliorated in the envenomed treated groups. Results highlights the significance of kaempferol in mitigating reproductive toxicity induced after snakebite envenoming.
Asunto(s)
Antioxidantes , Quempferoles , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Quempferoles/farmacología , Quempferoles/metabolismo , Motilidad Espermática , Semen/metabolismo , Testículo/metabolismo , Epidídimo/metabolismo , Espermatozoides/metabolismo , Ratas Wistar , Testosterona/metabolismo , Estrés Oxidativo , Antiinflamatorios/farmacología , NajaRESUMEN
This was a cross-sectional study with the aim of characterising Naja nigricincta nigricincta's oral bacterial flora as well as accompanying sensitivities and resistance towards antibiotics. Naja nigricincta nigricincta (zebra snake) is a spitting cobra indigenous to Namibia. Nasopharyngeal and venom swabs for bacterial culture and antibiotic sensitivity were taken from 37 native zebra snakes originating from the Khomas region that were captured for removal and relocation. Enterococcus faecalis, Proteus spp., Morganella morganii and Pseudomonas spp. were the organisms most often cultured. The antibiotic sensitivity profiles of these organisms suggest ciprofloxacin or a third-generation cephalosporin plus gentamicin or piperacillin-tazobactam as prophylactic antibiotics in case of Naja nigricincta nigricincta bites.
Asunto(s)
Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/complicaciones , Naja , Ponzoñas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Transversales , Faringe , Sudáfrica , Serpientes , Bacterias , AntivenenosRESUMEN
BACKGROUND: Envenomations by African snakes represent a high burden in the sub-Sahara region. The design and fabrication of polyspecific antivenoms with a broader effectiveness, specially tailored for its use in sub-Saharan Africa, require a better understanding of the immunological features of different Naja spp. venoms of highest medical impact in Africa; and to select the most appropriate antigen combinations to generate antivenoms of wider neutralizing scope. METHODOLOGY/PRINCIPAL FINDINGS: Rabbit-derived monospecific antisera were raised against the venoms of five spitting cobras and six non-spitting cobras. The effects of immunization in the animal model were assessed, as well as the development of antibody titers, as proved by immunochemical assays and neutralization of lethal, phospholipase A2 and dermonecrotic activities. By the end of the immunization schedule, the immunized rabbits showed normal values of all hematological parameters, and no muscle tissue damage was evidenced, although alterations in aspartate aminotransferase (AST) and alkaline phosphatase (ALP) suggested a degree of hepatic damage caused mainly by spitting cobra venoms. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within the spitting and no-spitting cobras, yet some antisera showed more extensive cross-reactivity than others. The antisera with the widest coverage were those of anti-Naja ashei and anti-N. nigricollis for the spitting cobras, and anti-N. haje and anti-N. senegalensis for the non-spitting cobras. CONCLUSIONS/SIGNIFICANCE: The methods and study design followed provide a rationale for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against cobra venoms in sub-Saharan Africa. Results suggest that venoms from N. ashei, N. nigricollis within the spitting cobras, and N. haje and N. senegalensis within the non-spitting cobras, generate antisera with a broader cross-reactivity. These experimental results should be translated to larger animal models used in antivenom elaboration to assess whether these predictions are reproduced.
Asunto(s)
Lagomorpha , Naja , Animales , Conejos , Elapidae , Antivenenos/farmacología , Sueros Inmunes , Venenos ElapídicosRESUMEN
This study investigated the clinical characteristics, treatments, and outcomes of envenomation involving cobra species in Thailand (Naja kaouthia, Naja siamensis, and Naja sumatrana). Data of patients who had been bitten by a cobra or inoculated via the eyes/skin in 2018-2021 were obtained from the Ramathibodi Poison Center. There were 1045 patients admitted during the 4-year study period (bite, n = 539; ocular/dermal inoculation, n = 506). Almost all patients with ocular/dermal inoculation had eye involvement and ocular injuries, but none had neurological effects. Most of the patients bitten by a cobra had local effects (69.0%) and neurological signs and symptoms (55.7%). The median interval between the bite and the onset of neurological symptoms was 1 h (range, 10 min to 24 h). Accordingly, patients should be observed closely in hospitals for at least 24 h after a bite. Intubation with ventilator support was required in 45.5% of patients and for a median duration of 1.1 days. Antivenom was administered in 63.5% of cases. There were nine deaths, most of which resulted from severe infection. Neurological effects and intubation were significantly more common after a monocled cobra bite than after a spitting cobra bite. The administration of antivenom with good supportive care, including the appropriate management of complications, especially wound infection, might decrease fatality.