Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Intervalo de año de publicación
1.
Genes Genomics ; 46(1): 113-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985546

RESUMEN

The location of female-specific/linked loci identified in Siamese cobra (Naja kaouthia) previously has been determined through in silico chromosome mapping of the Indian cobra genome (N. naja) as a reference genome. In the present study, we used in silico chromosome mapping to identify sex-specific and linked loci in Siamese cobra. Many sex-specific and sex-linked loci were successfully mapped on the Z sex chromosome, with 227 of the 475 specific loci frequently mapped in a region covering 57 Mb and positioned at 38,992,675-95,561,177 bp of the Indian cobra genome (N. naja). This suggested the existence of a putative sex-determining region (SDR), with one specific locus (PA100000600) homologous to the TOPBP1 gene. The involvement of TOPBP1 gene may lead to abnormal synaptonemal complexes and meiotic chromosomal defects, resulting in male infertility. These findings offer valuable insights into the genetic basis and functional aspects of sex-specific traits in the Siamese cobra, which will contribute to our understanding of snake genetics and evolutionary biology.


Asunto(s)
Elapidae , Naja naja , Animales , Masculino , Femenino , Elapidae/genética , Naja naja/genética , Venenos Elapídicos/genética , Antivenenos/genética , Cromosomas Sexuales/genética
2.
Genomics ; 113(1 Pt 2): 624-636, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002626

RESUMEN

Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.


Asunto(s)
Evolución Molecular , Naja naja/genética , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética , Animales , Naja naja/clasificación , Filogenia
4.
Expert Rev Proteomics ; 17(5): 411-423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32579411

RESUMEN

INTRODUCTION: The 'Big Four' venomous snakes - Daboia russelii, Naja naja, Bungarus caeruleus, and Echis carinatus - are primarily responsible for the majority of snake envenomation in India. Several other lesser-known venomous snake species also inflict severe envenomation in the country. AREAS COVERED: A comprehensive analysis of the venom proteome composition of the 'Big Four' and other medically important venomous snakes of India and the effect of regional variation in venom composition on immunorecognition and/or neutralization by commercial antivenom was undertaken by searching the literature (from 1985 to date) available in large public databases. Further, mass spectrometric identification of poorly immunogenic toxins of snake venom (against which commercial polyvalent antivenom contains a significantly lower proportion of antibodies) and its impact on antivenom therapy against snakebite are discussed. The application of mass spectrometry to identify protein (toxin) complexes as well as drug prototypes from Indian snake venoms and the clinical importance of such studies are also highlighted. EXPERT OPINION: Further detailed clinical and proteomic research is warranted to better understand the effects of regional snake venom composition on the clinical manifestation of envenomation and antivenom therapy and to improve the production of antibodies against poorly immunogenic venom components.


Asunto(s)
Antivenenos/genética , Proteoma/genética , Proteómica , Mordeduras de Serpientes/genética , Animales , Bungarus/genética , Venenos Elapídicos/química , Venenos Elapídicos/genética , India , Espectrometría de Masas/tendencias , Naja naja/genética , Mordeduras de Serpientes/prevención & control , Serpientes/genética , Venenos de Víboras/química , Venenos de Víboras/genética
5.
Int J Biol Macromol ; 162: 1283-1292, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562730

RESUMEN

Breast cancer (BC) is among the leading causes of mortality from cancer in women. Many of the available anticancer drugs have various side effects. Therefore, researchers are seeking novel anticancer agents particularly from natural compounds and in this regard, snake venom is still one of the main sources of drug discovery. Previous studies showed potential anticancer effects of Cytotoxin II (CTII) from Naja naja oxiana against the different types of cancers. In this study, a pET-SUMO-CTII vector was transformed into SHuffle® T7 Express, an Escherichia coli strain, for recombinant protein expression (rCTII) and the cytotoxic effects of this protein was assessed in MCF-7 cells. The flow cytometry assay was applied to measure the apoptosis and cell cycle. Also, mRNA levels of the Bax, Bcl2, P53, caspase-3, caspase-8, caspase-9, caspase-10, matrix metalloproteinases (MMP)-3, and MMP-9 were analyzed by quantitative real-time PCR to determine the underlying cellular pathways affected by rCTII. The results of this study showed that treatment with 4 µg mL-1 of rCTII enhanced apoptosis through the intrinsic and extrinsic pathways. Also, the increase of the cells' proportion in the sub-G1 phase as well as a reduction in S phase was observed. In addition, the expression of MMP-3 and MMP-9 was decreased in the treated group in comparison to the control group that may contribute to the reduced migratory ability of tumor cells. These experimental results indicate that rCTII has anti-proliferative potential, and so this protein could be a potential drug for BC therapy in combination with other drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Citotoxinas/farmacología , Venenos Elapídicos , Naja naja/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Venenos Elapídicos/biosíntesis , Venenos Elapídicos/genética , Venenos Elapídicos/farmacología , Femenino , Humanos , Células MCF-7 , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
6.
Nat Genet ; 52(1): 106-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907489

RESUMEN

Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.


Asunto(s)
Biología Computacional/métodos , Venenos Elapídicos/análisis , Venenos Elapídicos/genética , Genoma , Naja naja/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , India , Homología de Secuencia
7.
J Med Virol ; 92(4): 433-440, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31967321

RESUMEN

The current outbreak of viral pneumonia in the city of Wuhan, China, was caused by a novel coronavirus designated 2019-nCoV by the World Health Organization, as determined by sequencing the viral RNA genome. Many initial patients were exposed to wildlife animals at the Huanan seafood wholesale market, where poultry, snake, bats, and other farm animals were also sold. To investigate possible virus reservoir, we have carried out comprehensive sequence analysis and comparison in conjunction with relative synonymous codon usage (RSCU) bias among different animal species based on the 2019-nCoV sequence. Results obtained from our analyses suggest that the 2019-nCoV may appear to be a recombinant virus between the bat coronavirus and an origin-unknown coronavirus. The recombination may occurred within the viral spike glycoprotein, which recognizes a cell surface receptor. Additionally, our findings suggest that 2019-nCoV has most similar genetic information with bat coronovirus and most similar codon usage bias with snake. Taken together, our results suggest that homologous recombination may occur and contribute to the 2019-nCoV cross-species transmission.


Asunto(s)
Betacoronavirus/genética , Quirópteros/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades , Neumonía Viral/transmisión , Neumonía Viral/virología , Serpientes/virología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Betacoronavirus/clasificación , Betacoronavirus/fisiología , Bungarus/genética , Bungarus/virología , COVID-19 , Quirópteros/genética , Uso de Codones , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades , Evolución Molecular , Genoma Viral , Recombinación Homóloga , Especificidad del Huésped , Humanos , Naja naja/genética , Naja naja/virología , Filogenia , Neumonía Viral/epidemiología , SARS-CoV-2 , Serpientes/genética , Zoonosis
8.
Electron. j. biotechnol ; Electron. j. biotechnol;42: 23-29, Nov. 2019. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1087353

RESUMEN

Background: Snakes are found on every continent in the world except Antarctica, and on smaller land masses. Being ecologically important, they also cause a large number of bites, leading to millions of deaths. Mitochondrial and nuclear gene sequences are being used to identify, characterize, and infer genetic biodiversity among different snake species. Furthermore, phylogenetics helps in inferring the relationships and evolutionary histories among these species. Black cobra is one of the four most venomous snakes in Pakistan. Four mitochondrial (ND4, Cytochrome b, 12S rRNA, and 16S rRNA) and four nuclear (C-mos, RAG-1, BDNF, and NT3) genes were used to trace diversity and infer the phylogenetic relationship of black cobra in Pakistan. Results: Almost similar phylogenies were obtained through maximum likelihood and Bayesian inference, showing two species of cobra in Pakistan, namely, black cobra (Naja naja) and brown cobra (Naja oxiana). All Naja species were divided into three clades: black cobra (N. naja) and brown cobra (N. oxiana) cladding with different species of Naja; N. naja (Pakistan) cladding with N. naja from Nepal; and N. oxiana showed close relationship with Naja kaouthia from Thailand and Naja siamensis from Thailand. Conclusion: It was confirmed genetically that there are two cobra species in Pakistan, i.e., black and brown cobras. This study will help in not only genetic conservation but also developing anti-venom against snake species.


Asunto(s)
Naja naja/genética , Pakistán , Filogenia , Especificidad de la Especie , ADN Mitocondrial , Reacción en Cadena de la Polimerasa , Elapidae/genética , Biodiversidad
9.
Mol Biol Rep ; 46(6): 6087-6098, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31502192

RESUMEN

The complete genome sequence provides the opportunity for genome-wide and coding region analysis of SSRs in the king cobra and for cross-species identification of microsatellite markers in the Chinese cobra. In the Ophiophagus hannah genome, tetranucleotide repeats (38.03%) were the most abundant category, followed by dinucleotides (23.03%), pentanucleotides (13.07%), mononucleotides (11.78%), trinucleotides (11.49%) and hexanucleotides (2.6%). Twenty predominant motifs in the O. hannah genome were (A)n (C)n, (AC)n, (AG)n, (AT)n, (AGG)n, (AAT)n, (AAG)n, (AAC)n, (ATG)n, (ATAG)n, (AAGG)n, (ATCT)n, (CCTT)n, (ATTT)n, (AAAT)n, (AATAG)n, (ATTCT)n, (ATATGT)n, (AGATAT)n. In total, 4344 SSRs were found in coding sequences (CDSs). Tetranucleotides (52.79%) were the most abundant microsatellite type in CDS, followed by trinucleotides (28.50%), dinucleotides (11.02%), pentanucleotides (4.42%), mononucleotides (1.77%), and hexanucleotides (1.50%). A total of 984 CDSs containing microsatellites were assigned 11152 Gene Ontology (GO) functional terms. Gene Ontology (GO) analysis demonstrated that cellular process, cell and binding were the most frequent GO terms in biological process, cellular component and molecular function, respectively. Thirty-two novel highly polymorphic (PIC > 0.5) SSR markers for Naja atra were developed from cross-species amplification based on the tetranucleotide microsatellite sequences in the king cobra genome. The number of alleles (NA) per locus had between 3 and 11 alleles with an average of 6.5, the polymorphism information content (PIC) value ranged from 0.521 to 0.858 (average = 0.707), the observed heterozygosity (Ho) of 32 microsatellite loci ranged from 0.292 to 0.875 (mean = 0.678), the expected heterozygosity (HE) ranged from 0.561 to 0.889 (average = 0.761), and 3 microsatellite loci exhibited statistically significant departure from Hardy-Weinberg equilibrium (HWE) after Bonferroni correction (p < 0.003).


Asunto(s)
Repeticiones de Microsatélite/genética , Naja naja/genética , Ophiophagus hannah/genética , Alelos , Animales , Sitios Genéticos/genética , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos
10.
J Proteomics ; 159: 19-31, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28263888

RESUMEN

We conducted an omics-analysis of the venom of Naja kaouthia from China. Proteomics analysis revealed six protein families [three-finger toxins (3-FTx), phospholipase A2 (PLA2), nerve growth factor, snake venom metalloproteinase (SVMP), cysteine-rich secretory protein and ohanin], and venom-gland transcriptomics analysis revealed 28 protein families from 79 unigenes. 3-FTx (56.5% in proteome/82.0% in transcriptome) and PLA2 (26.9%/13.6%) were identified as the most abundant families in venom proteome and venom-gland transcriptome. Furthermore, N. kaouthia venom expressed strong lethality (i.p. LD50: 0.79µg/g) and myotoxicity (CK: 5939U/l) in mice, and showed notable activity in PLA2 but weak activity in SVMP, l-amino acid oxidase or 5' nucleotidase. Antivenomic assessment revealed that several venom components (nearly 17.5% of total venom) from N. kaouthia could not be thoroughly immunocaptured by commercial Naja atra antivenom. ELISA analysis revealed that there was no difference in the cross-reaction between N. kaouthia and N. atra venoms against the N. atra antivenom. The use of commercial N. atra antivenom in treatment of snakebites caused by N. kaouthia is reasonable, but design of novel antivenom with the attention on enhancing the immune response of non-immunocaptured components should be encouraged. BIOLOGICAL SIGNIFICANCE: The venomics, antivenomics and venom-gland transcriptome of the monocoled cobra (Naja kaouthia) from China have been elucidated. Quantitative and qualitative differences are evident when venom proteomic and venom-gland transcriptomic profiles are compared. Two protein families (3-FTx and PLA2) are found to be the predominated components in N. kaouthia venom, and considered as the major players in functional role of venom. Other protein families with relatively low abundance appear to be minor in the functional significance. Antivenomics and ELISA evaluation reveal that the N. kaouthia venom can be effectively immunorecognized by commercial N. atra antivenom, but still a small number of venom components could not be thoroughly immunocaptured. The findings indicate that exploring the precise composition of snake venom should be executed by an integrated omics-approach, and elucidating the venom composition is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms.


Asunto(s)
Venenos Elapídicos/biosíntesis , Glándulas Exocrinas/metabolismo , Perfilación de la Expresión Génica , Naja naja/metabolismo , Transcriptoma/fisiología , Animales , Antivenenos , Venenos Elapídicos/genética , Naja naja/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...