Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.458
Filtrar
1.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149882

RESUMEN

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Asunto(s)
Oligoquetos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/efectos adversos , Animales , Suelo/química , Microplásticos/análisis , Microplásticos/toxicidad , Gases de Efecto Invernadero/análisis , Nanopartículas/análisis , Productos Agrícolas/crecimiento & desarrollo
2.
J Hazard Mater ; 476: 135226, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029186

RESUMEN

The increasing prevalence of coal mine dust-related lung diseases in coal miners calls for urgent and meticulous scrutiny of airborne respirable coal mine dust (RCMD), specifically focusing on particles at the nano-level. This necessity is driven by expanding research, including the insights revealed in this paper, that establish the presence and significantly increased toxicity of nano-sized coal dust particles in contrast to their larger counterparts. This study presents an incontrovertible visual proof of these tiny particulates in samples collected from underground mines, utilizing advanced techniques such as scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The intricate elemental composition of nano-sized coal dust identified through EDS analysis reveals the presence of elements such as silica and iron, which are known to contribute to lung pathologies when inhaled over prolonged periods. The outcomes of the statistical analyses reveal significant relationships between particle size and elemental composition, highlighting that smaller particles tend to have higher carbon content, while larger particles exhibit increased concentrations of elements like silica and aluminum. These analyses underscore the complex interactions within nano-sized coal dust, providing critical insights into their behavior, transport, and health impacts. The nano-sized coal dust could invade the alveoli, carrying these toxic elements from where they are impossible to exhale. The revelation of nano-sized coal dust's existence and the associated health hazards necessitate their incorporation into the regulatory framework governing the coal mining industry. This study lays the groundwork for heightened protective measures for miners, urging the invention of state-of-the-art sampling instruments, comprehensive physicochemical profiling of RCMD nanoparticles, and the pursuit of groundbreaking remedies to neutralize their toxic impact. These findings advocate for a paradigm shift in how the coal mining industry views and handles particulate matter, proposing a re-evaluation of occupational health standards and a call to action for protecting coal miners worldwide.


Asunto(s)
Minas de Carbón , Carbón Mineral , Polvo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Polvo/análisis , Carbón Mineral/análisis , Exposición Profesional/análisis , Espectrometría por Rayos X , Región de los Apalaches , Nanopartículas/análisis , Nanopartículas/química , Contaminantes Ocupacionales del Aire/análisis , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38833436

RESUMEN

This study addressed primarily the characterisation and quantification of titanium dioxide (TiO2) (nano)particles (NPs) in a large variety of commercial foodstuffs. The samples were purchased from local markets in Spain before the ban of TiO2 food additive (E171) in the EU. The analyses were carried out by single particle inductively coupled plasma-tandem mass spectrometry (spICP-MS/MS) in mass shift mode (oxidation of 48Ti to 48Ti16O (m/z = 64)) and using a highly efficient sample introduction system (APEX™ Ω). This novel analytical approach allowed accurate characterisation of a large panel of TiO2 NPs sizes ranging from ∼12 to ∼800 nm without isobaric interferences from 48Ca isotope, which is highly abundant in most of the analysed foodstuffs. TiO2 NPs were extracted from foodstuffs using sodium dodecyl sulphate (0.1%, w/v) and diluted with ultra-pure water to reach ∼ 1000 particles signals per acquisition. All the analysed samples contained TiO2 NPs with concentrations ranging from 1010 to 1014 particles kg-1, but with significant low recoveries compared to the total Ti determination. A selection of samples was also analysed using a similar spICP-MS/MS approach with a conventional sample introduction system. The comparison of results highlighted the improvement of the limit of detection in size (12 nm) by the APEX™ Ω system, providing nanoparticulate fractions ranging from ∼4% (cheddar sauce) up to ∼87% (chewing gum), which is among the highest nanoparticulate fractions reported in literature using a spICP-MS approach. In addition, two commercially available E171 additives were analysed using the previous approaches and other techniques in different European laboratories with the aim of methods inter-comparison. This study provides occurrence data related to TiO2 NPs in common commercial foodstuffs but it also demonstrates the potential of the novel analytical approach based on APEX™-ICP-MS/MS to characterise nano-size TiO2 particles in complex matrices such as foodstuffs.


Asunto(s)
Aditivos Alimentarios , Análisis de los Alimentos , Espectrometría de Masas en Tándem , Titanio , Titanio/química , Titanio/análisis , Aditivos Alimentarios/análisis , Contaminación de Alimentos/análisis , Tamaño de la Partícula , Nanopartículas/química , Nanopartículas/análisis
4.
Ecotoxicol Environ Saf ; 280: 116366, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38806335

RESUMEN

A simple method for measuring the concentration of nano/microplastics (N/MPs) in soil, which is difficult owing to the size of the filter mesh and the resolution of the measuring instrument, was investigated. A spectrophotometer was used for the measurements and polystyrene particles were used as the N/MP samples. When measuring N/MP concentrations in soil suspensions, absorbance was measured at two wavelengths, and the best combination of wavelengths for measurement was extracted because soil particles and leached components interfere with N/MP absorbance. A wavelength combination of 220-260 nm and 280-340 nm was found to be suitable for a variety of soils. As N/MPs are adsorbed on the surface of soil particles and precipitate with soil particles in suspension, a calibration curve was created between the concentration of N/MPs in the soil suspension and the N/MP content in the soil. The calibration curve showed a linear relationship, allowing for the estimation of the concentration of N/MPs in the soil. Although other N/MP materials, such as polyethylene and polyethylene terephthalate, must also still be considered and tested, this simple method has the potential to measure N/MPs in various types of soil.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Microplásticos/análisis , Espectrofotometría Ultravioleta/métodos , Calibración , Poliestirenos/química , Nanopartículas/análisis , Nanopartículas/química
10.
J Occup Environ Hyg ; 21(6): 423-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593380

RESUMEN

Aerotoxic Syndrome may develop as a result of chronic, low-level exposure to organophosphates (OPs) and volatile organic compounds in the airplane cabin air, caused by engine oil leaking past wet seals. Additionally, acute high-level exposures, so-called "fume events," may occur. However, air quality monitoring studies concluded that levels of inhaled chemicals might be too low to cause adverse effects. The presence of aerosols of nanoparticles (NPs) in bleed air has often been described. The specific hypothesis is a relation between NPs acting as a vector for toxic compounds in the etiology of the Aerotoxic Syndrome. These NPs function as carriers for toxic engine oil compounds leaking into the cabin air. Inhaled by aircrew NPs carrying soluble and insoluble components deposit in the alveolar region, where they are absorbed into the bloodstream. Subsequently, they may cross the blood-brain barrier and release their toxic compounds in the central nervous system. Olfactory absorption is another route for NPs with access to the brain. To study the hypothesis, all published in-flight measurement studies (2003-2023) of airborne volatile (and low-volatile) organic pollutants in cabin air were reviewed, including NPs (10-100 nm). Twelve studies providing data for a total of 387 flights in 16 different large-passenger jet aircraft types were selected. Maximum particle number concentrations (PNC) varied from 104 to 2.8 × 106 #/cm3 and maximum mass concentrations from 9 to 29 µg/m3. NP-peaks occurred after full-power take-off, in tailwind condition, after auxiliary power unit (APU) bleed air introduction, and after air conditioning pack failure. Chemical characterization of the NPs showed aliphatic hydrocarbons, black carbon, and metallic core particles. An aerosol mass-spectrometry pattern was consistent with aircraft engine oil. It is concluded that chronic exposure of aircrew to NP-aerosols, carrying oil derivatives, maybe a significant feature in the etiology of Aerotoxic Syndrome. Mobile NP measuring equipment should be made available in the cockpit for long-term monitoring of bleed air. Consequently, risk assessment of bleed air should include monitoring and analysis of NPs, studied in a prospective cohort design.


Asunto(s)
Aeronaves , Nanopartículas , Exposición Profesional , Nanopartículas/análisis , Humanos , Exposición Profesional/análisis , Exposición Profesional/efectos adversos , Exposición por Inhalación/análisis , Exposición por Inhalación/efectos adversos , Contaminantes Ocupacionales del Aire/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad , Monitoreo del Ambiente/métodos , Aerosoles/análisis
11.
Int J Pharm ; 656: 124097, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609058

RESUMEN

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.


Asunto(s)
Nanopartículas , Tamaño de la Partícula , Poliestirenos , Dióxido de Silicio , Nanopartículas/química , Nanopartículas/análisis , Poliestirenos/química , Dióxido de Silicio/química , Oro/química , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Animales
12.
J AOAC Int ; 107(4): 608-616, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38507699

RESUMEN

BACKGROUND: Determining the concentration of nanoparticles (NPs) in marine organisms is important for evaluating their environmental impact and to assess potential food safety risks to human health. OBJECTIVE: The current work aimed at developing an in-house method based on single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) suitable for surveillance of NPs in mussels. METHODS: A new low-cost and simple protease mixture was utilized for sample digestion, and novel open-source data processing was used, establishing detection limits on a statistical basis using false-positive and false-negative probabilities. The method was validated for 30 and 60 nm gold NPs spiked to mussels as a proxy for seafood. RESULTS: Recoveries were 76-77% for particle mass concentration and 94-101% for particle number concentration. Intermediate precision was 8-9% for particle mass concentration and 7-8% for particle number concentration. The detection limit for size was 18 nm, for concentration 1.7 ng/g, and 4.2 × 105 particles/g mussel tissue. CONCLUSION: The performance characteristics of the method were satisfactory compared with numeric Codex criteria. Further, the method was applied to titanium-, chromium- and copper-based particles in mussels. HIGHLIGHTS: The method demonstrates a new practical and cost-effective sample treatment, and streamlined, transparent, and reproducible data treatment for the routine surveillance of NPs in mussels.


Asunto(s)
Bivalvos , Espectrometría de Masas , Nanopartículas del Metal , Animales , Bivalvos/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Límite de Detección , Oro/química , Tamaño de la Partícula , Contaminación de Alimentos/análisis , Alimentos Marinos/análisis , Titanio/análisis , Titanio/química , Cobre/análisis , Nanopartículas/análisis , Nanopartículas/química
13.
NanoImpact ; 34: 100503, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514026

RESUMEN

TiO2 is the most widely used white pigment in plastics and food packaging industry, thus the question of its migration towards food and hence the impact on consumers is raised. Since recent research indicate its potential toxicity, it is necessary to study TiO2 contamination as a consequence of food storage. For this purpose, plastic containers from commercially-available dairy products and custom-made TiO2-spiked polypropylene materials were put in contact with 50% (v/v) ethanol and 3% (w/v) acetic acid, which were used here as food simulants. The migration assays were carried out under standard contact conditions of packaging use (as recommended by Commission Regulation (EU) N° 10/2011 for food contact migration testing), and under conditions of extreme mechanical degradation of the packaging. The TiO2 (nano)particles released in the food simulants were analysed by single particle inductively coupled plasma-tandem mass spectrometry in mass-shift mode and using a high efficiency sample introduction system (APEX™ Ω) to avoid matrix effects from food simulants. For the dairy product containers and for the spiked polypropylene, results showed release of TiO2 particles of rather large sizes (average size: 164 and 175 nm, respectively) under mechanical degradation conditions, i.e. when the polymeric structure is damaged. The highest amounts of TiO2 were observed in 50% ethanol after 10 days of storage at 50 °C (0.62 ng cm-2) for the dairy product containers and after 1 day of storage at 50 °C (0.68 ng cm-2) for the spiked polypropylene. However, the level of Ti released in particle form was very small compared to the total Ti content in the packaging and far below the acceptable migration limits set by European legislation. Release under standard contact conditions of use of the container was not measurable, thus the migration of TiO2 particles from this packaging to dairy products among storage is expected to be negligible.


Asunto(s)
Contaminación de Alimentos , Embalaje de Alimentos , Espectrometría de Masas en Tándem , Titanio , Titanio/análisis , Titanio/química , Contaminación de Alimentos/análisis , Polipropilenos/química , Polipropilenos/análisis , Tamaño de la Partícula , Nanopartículas/análisis , Nanopartículas/efectos adversos
14.
Anal Bioanal Chem ; 416(11): 2657-2676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329514

RESUMEN

The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.


Asunto(s)
Terapia por Láser , Nanopartículas del Metal , Nanopartículas , Humanos , Análisis Espectral , Nanopartículas del Metal/química , Espectrometría de Masas/métodos , Nanopartículas/toxicidad , Nanopartículas/análisis
15.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926233

RESUMEN

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Asunto(s)
Productos Biológicos , Nanopartículas , Medicamentos a Granel , Proteínas/análisis , Nanopartículas/análisis , Ensayos Analíticos de Alto Rendimiento , Tamaño de la Partícula
16.
Braz. J. Pharm. Sci. (Online) ; 60: e22542, 2024. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1533990

RESUMEN

We developed poly-ε-caprolactone (PCL)-based nanoparticles containing D-α-tocopherol polyethylene glycol-1000 succinate (TPGS) or Poloxamer 407 as stabilizers to efficiently encapsulate genistein (GN). Two formulations, referred to as PNTPGS and PNPol, were prepared using nanoprecipitation. They were characterized by size and PDI distribution, zeta potential, nanoparticle tracking analysis (NTA), GN association (AE%), infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). PNTPGS-GN exhibited a particle size of 141.2 nm, a PDI of 0.189, a zeta potential of -32.9 mV, and an AE% of 77.95%. PNPol-GN had a size of 146.3 nm, a better PDI than PNTPGS-GN (0.150), a less negative zeta potential (-21.0 mV), and an AE% of 68.73%. Thermal and spectrometric analyses indicated that no new compounds were formed, and there was no incompatibility detected in the formulations. Cellular studies revealed that Poloxamer 407 conferred less toxicity to PCL nanoparticles. However, the percentage of uptake decreased compared to the use of TPGS, which exhibited almost 80% cellular uptake. This study contributes to the investigation of stabilizers capable of conferring stability to PCL nanoparticles efficiently encapsulating GN. Thus, the PCL nanoparticle proposed here is an innovative nanomedicine for melanoma therapy and represents a strong candidate for specific pre-clinical and in vivo studie


Asunto(s)
Genisteína/farmacología , Nanopartículas/análisis , Melanoma/tratamiento farmacológico , Tamaño de la Partícula , Análisis Espectral/clasificación , Rastreo Diferencial de Calorimetría/métodos , Cromatografía Líquida de Alta Presión/métodos
17.
Transfus Med ; 33(5): 398-402, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37483014

RESUMEN

BACKGROUND: Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS: Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 µm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS: Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION: This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.


Asunto(s)
Factor VIII , Fibrinógeno , Nanopartículas , Humanos , Nanopartículas/análisis , Tamaño de la Partícula , Politetrafluoroetileno , Factor VIII/química , Fibrinógeno/química , Filtración
18.
Food Chem Toxicol ; 176: 113779, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062331

RESUMEN

This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Nanopartículas/análisis , Titanio , Alimentos Marinos/análisis , Tracto Gastrointestinal
19.
Int J Nanomedicine ; 18: 225-241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660337

RESUMEN

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Galio , Grafito , Nanopartículas del Metal , Oxiquinolina , Animales , Humanos , Ratones , Materiales Biocompatibles , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Galio/química , Grafito/química , Células HCT116 , Nanopartículas del Metal/análisis , Nanopartículas/análisis , Oxiquinolina/química , Tamaño de la Partícula , Albúmina Sérica Bovina/farmacología , Agua , Antineoplásicos/síntesis química , Antineoplásicos/química
20.
Water Res ; 230: 119545, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623384

RESUMEN

The growing applications of CuO nanoparticles (NPs) in industrial and agriculture has increased their concentrations in wastewater and subsequently accumulated in waste activated sludge (WAS), raising concerns about their impact on reutilization of WAS, especially on the medium-chain carboxylates (MCCs) production from anaerobic fermentation of WAS. Here we showed that CuO NPs at 10-50 mg/g-TS can significantly inhibit MCCs production, and reactive oxygen species generation was revealed to be the key factor linked to the phenomena. At lower CuO NPs concentrations (0.5-2.5 mg/g-TS), however, MCCs production was enhanced, with a maximum level of 37% compared to the control. The combination of molecular approaches and metaproteomic analysis revealed that although low dosage CuO NPs (2.5 mg/g-TS) weakly inhibited chain elongation process, they displayed contributive characteristics both in WAS solubilization and transport/metabolism of carbohydrate. These results demonstrated that the complex microbial processes for MCCs production in the anaerobic fermentation of WAS can be affected by CuO NPs in a dosage-dependent manner via regulating microbial protein expression level. Our findings can provide new insights into the influence of CuO NPs on anaerobic fermentation process and shed light on the treatment option for the resource utilization of CuO NPs polluted WAS.


Asunto(s)
Nanopartículas , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Nanopartículas/análisis , Cobre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...