Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Int Ophthalmol ; 44(1): 352, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180619

RESUMEN

PURPOSE: Retinoblastoma (RB) is one of the most common intraocular cancers, with the highest prevalence among infants and young children under the age five. Numerous findings across the literature illustrate the involvement and significance of circular RNAs (circRNAs) in human malignancies, including RB. The current investigation attempted to decipher the exact roles and underlying mechanisms of a novel circRNA, hsa_circ_0078136, in RB progression. METHODS: The hsa_circ_0078136 expression was evaluated in RB tumors and cell lines via qRT-PCR. The significance of hsa_circ_0078136 in RB was examined by performing CCK8 assay, transwell assays, western blotting of apoptotic and IL-17 signaling ligand molecules, and a subcutaneous xenograft tumor model. In addition, the interaction of circRNA and eukaryotic translation initiation factor 4A3 (EIF4A3) was determined with bioinformatics, western blot, and RIP assay. RESULTS: The hsa_circ_0078136 expression was reduced in RB tumor samples and cells. Additionally, its overexpression restricted the oncogenic properties of RB cells in vitro. Moreover, hsa_circ_0078136 overexpression lowered the protein levels of cytokine ligand molecules of IL-17 signaling pathway in RB cell lines. In vivo, hsa_circ_0078136 overexpression in subcutaneous tumor xenografts reduced tumor growth. We also observed that EIF4A3 binds to the downstream flanking sequence of hsa_circ_0078136 in the SHRPH pre-mRNA transcript, and EIF4A3 overexpression reduced hsa_circ_0078136 expression, suggesting that EIF4A3 inhibited hsa_circ_0078136 formation. CONCLUSIONS: Our results demonstrate that hsa_circ_0078136 is regulated by EIF4A3 and functions as a tumor suppressor via the IL-17 signaling pathway in RB.


Asunto(s)
Carcinogénesis , Factor 4A Eucariótico de Iniciación , Interleucina-17 , ARN Circular , Neoplasias de la Retina , Retinoblastoma , Transducción de Señal , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Humanos , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , ARN Circular/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Ratones , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Animales , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Ratones Desnudos , Apoptosis , Masculino , Células Tumorales Cultivadas , Línea Celular Tumoral , Femenino , ARN Helicasas DEAD-box
2.
Commun Biol ; 7(1): 919, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079981

RESUMEN

Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct retinoblastoma subtypes with different clinical behavior have been described based on gene expression and methylation profiling. Using consensus clustering of DNA methylation analysis from 61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2 retinoblastomas outside the MYCN-driven cluster are characterized by high expression of genes from mesodermal development, including NKX2-5. Knockdown of MYCN expression in retinoblastoma cell models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell models better identifies MYCN-driven retinoblastoma than MYCN amplification and can identify cases that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated and less aggressive tumor biology.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/patología , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Metilación de ADN , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Desdiferenciación Celular/genética , Femenino , Masculino , Preescolar
4.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000021

RESUMEN

Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Retinoblastoma , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Animales , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Epigénesis Genética , Acetilación , Microambiente Tumoral , Regulación Neoplásica de la Expresión Génica , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética
5.
Pathol Res Pract ; 260: 155392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880039

RESUMEN

In this study, we tested the hypothesis that ALYREF/THOC4, a poor prognostic factor in different cancer types, has potential as a drug target and prognostic biomarker for retinoblastoma (RB). Immunostaining (IHC), Western blot, and RT-qPCR analyses detected overexpression of ALYREF in the RB cell lines Y79, RB143, WERI-RB1, and RB116. IHC analysis on RB tumor array showed that 11/14 of RB tumors were ALYREF+ to varying degrees, with eight tumors at maximum 3+ intensity. The IHC analysis also detected ALYREF+ cells in normal retina, mainly in the inner nuclear and ganglion cell layer, while some tumor-bearing human eyes were ALYREF+ in the optic nerve suggesting a role in optic invasion/tumor invasion. The expression of ALYREF within the tumor itself, in the optic nerve, as well as in adjacent "normal" retina, suggest that this pattern of expression may lead to ALYREF being a potentially useful prognostic indicator for RB, as it is for other tumors. siRNA knockdown of ALYREF resulted in a 40 % decrease in cell growth in both WERI-RB1 and Y79 cells (p<0.05) and this was associated with decreased expression of mRNAs for the cell proliferation markers Ki67 and PCNA (p<0.005). These results suggest a role for ALYREF in RB cell growth regulation and its potential as both a target and a biomarker for tumor growth inhibition by anti-cancer therapies.


Asunto(s)
Proliferación Celular , Neoplasias de la Retina , Retinoblastoma , Retinoblastoma/patología , Retinoblastoma/metabolismo , Retinoblastoma/genética , Humanos , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
6.
Am J Pathol ; 194(9): 1780-1798, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879085

RESUMEN

Retinoblastoma (RB) is an intraocular malignancy initiated by loss of RB1 function and/or dysregulation of MYCN oncogene. RB is primarily treated with chemotherapy; however, systemic toxicity and long-term adverse effects remain a significant challenge necessitating the identification of specific molecular targets. Aurora kinase A (AURKA), a critical cell cycle regulator, contributes to cancer pathogenesis, especially in RB1-deficient and MYCN-dysregulated tumors. The current immunohistochemistry study in patient specimens (n = 67) indicated that AURKA is overexpressed in RB, and this elevated expression correlates with one or more histopathologic high-risk factors, such as tumor involvement of the optic nerve, choroid, sclera, and/or anterior segment. More specifically, AURKA is ubiquitously expressed in most advanced-stage RB tumors that show a suboptimal response to chemotherapy. shRNA-mediated depletion/pharmacologic inhibition studies in cell lines, patient-derived cells, in vivo xenografts, and enucleated patient specimens confirmed that RB cells are highly sensitive to a lack of functional AURKA. In addition, AURKA and N-myc proto-oncogene protein (MYCN) associate with each other to regulate their levels in RB cells. Overall, these results demonstrate a previously unknown up-regulation of AURKA in RB, facilitated by its crosstalk with MYCN. The elevated levels of this kinase may indicate unfavorable prognosis in tumors refractory to chemotherapy. This study provides a rationale and confirms that therapeutic targeting of elevated AURKA in RB could be a potential treatment approach.


Asunto(s)
Aurora Quinasa A , Proto-Oncogenes Mas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/patología , Retinoblastoma/metabolismo , Retinoblastoma/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Animales , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/tratamiento farmacológico , Ratones , Femenino , Factores de Riesgo , Masculino , Terapia Molecular Dirigida , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Biomarcadores de Tumor/metabolismo , Preescolar
7.
Invest Ophthalmol Vis Sci ; 65(6): 18, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38861274

RESUMEN

Purpose: Regression of retinoblastoma vitreous seeds (VS) during intravitreal chemotherapy can be delayed, resulting in supernumerary injections. Similarly, VS relapse may not be clinically evident at first. A predictive biomarker of tumor regression and relapse could help guide real-time clinical decision making. Retinoblastoma is an oxygen-sensitive tumor; paradoxically, VS survive in the hypoxic vitreous. We hypothesized that VS elaborate pro-angiogenic cytokines. The purpose was to determine if pro-angiogenic cytokine signatures from aqueous humor could serve as a biomarker of VS response to treatment. Methods: Multiplex ELISA was performed on aqueous from rabbit eyes with human retinoblastoma VS xenografts to identify expressed proangiogenic cytokines and changes in aqueous cytokine levels during intravitreal treatment were determined. Confirmatory RNAscope in situ hybridization for VEGF-A was performed on human retinoblastoma tumor sections and VS xenografts from rabbits. For human eyes undergoing intravitreal chemotherapy, serial aqueous VEGF-A levels measured via VEGF-A-specific ELISA were compared to clinical response. Results: VEGF-A was highly expressed in human retinoblastoma VS in the xenograft model, and was the only proangiogenic cytokine that correlated with VS disease burden. In rabbits, aqueous VEGF-A levels decreased in response to therapy, consistent with quantitative VS reduction. In patients, aqueous VEGF-A levels associated with clinical changes in disease burden (regression, stability, or relapse), with changes in VEGF-A levels correlating with clinical response. Conclusions: Aqueous VEGF-A levels correlate with extent of retinoblastoma VS, suggesting that aqueous VEGF-A may serve as a predictive molecular biomarker of treatment response.


Asunto(s)
Humor Acuoso , Biomarcadores de Tumor , Ensayo de Inmunoadsorción Enzimática , Inyecciones Intravítreas , Neoplasias de la Retina , Retinoblastoma , Factor A de Crecimiento Endotelial Vascular , Cuerpo Vítreo , Retinoblastoma/metabolismo , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Animales , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Humor Acuoso/metabolismo , Humanos , Cuerpo Vítreo/metabolismo , Cuerpo Vítreo/patología , Conejos , Biomarcadores de Tumor/metabolismo , Biopsia Líquida/métodos , Siembra Neoplásica , Femenino , Inhibidores de la Angiogénesis/uso terapéutico , Citocinas/metabolismo
8.
Sci Rep ; 14(1): 14544, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914697

RESUMEN

Retinoblastoma is one of the most common ocular malignancies in children. Bmi-1, a member of the Polycomb group family of transcriptional repressors, is expressed in a variety of tumors. The purpose of our study was to explore the role of Bmi-1 in retinoblastoma. RT-qPCR and western blot were used for calculating the mRNA and protein levels of Bmi-1 and RKIP. MTT, Wound healing and Transwell assays were performed to measure the proliferation, migration and invasion in retinoblastoma cells. Cell apoptosis was detected by flow cytometry. The volume and mass of transplanted tumors were detected in nude mice. Bmi-1 was over expressed, and RKIP was low expressed in retinoblastoma cells. Bmi-1 promoted cell proliferation, migration and invasion and suppressed cell apoptosis of Y79 and SO-RB50 cells. Downregulation of Bmi-1 and overexpression of RKIP inhibited cell proliferation, migration and invasion, and increased cell apoptosis. The functions of Bmi-1 knockdown on retinoblastoma cells were blocked by RKIP knockdown, but promoted by RKIP. Down-regulated Bmi-1 inhibited xenograft tumor growth, and RKIP exacerbated this inhibitory effect. Bmi-1 served as a potential therapeutic target for improving the efficacy of clinical treatment in retinoblastoma. All the findings revealed the functions of Bmi-1/RKIP axis in retinoblastoma tumorigenesis.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Unión a Fosfatidiletanolamina , Complejo Represivo Polycomb 1 , Retinoblastoma , Humanos , Retinoblastoma/patología , Retinoblastoma/metabolismo , Retinoblastoma/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Apoptosis/genética , Movimiento Celular/genética , Animales , Línea Celular Tumoral , Ratones , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética
9.
Med Oncol ; 41(7): 168, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834895

RESUMEN

Retinoblastoma (RB) is a pediatric cancer of the eye that occurs in 1/15000 live births worldwide. Albeit RB is initiated by the inactivation of RB1 gene, the disease progression relies largely on transcriptional alterations. Therefore, evaluating gene expression is vital to unveil the therapeutic targets in RB management. In this study, we employed an RT2 Profiler™ PCR array for a focused analysis of 84 cancer-specific genes in RB. An interaction network was built with gene expression data to identify the dysregulated pathways in RB. The key transcript alterations identified in 13 tumors by RT2 Profiler™ PCR array was further validated in 15 tumors by independent RT-qPCR. Out of 84 cancer-specific genes, 68 were dysregulated in RB tumors. Among the 68 genes, 23 were chosen for further analysis based on statistical significance and abundance across multiple tumors. Pathway analysis of altered genes showed the frequent perturbations of cell cycle, angiogenesis and apoptotic pathways in RB. Notably, upregulation of MCM2, MKI67, PGF, WEE1, CDC20 and downregulation of COX5A were found in all the tumors. Western blot confirmed the dysregulation of identified targets at protein levels as well. These alterations were more prominent in invasive RB, correlating with the disease pathogenesis. Our molecular analysis thus identified the potential therapeutic targets for improving retinoblastoma treatment. We also suggest that PCR array can be used as a tool for rapid and cost-effective gene expression analysis.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Retinoblastoma/genética , Retinoblastoma/patología , Retinoblastoma/metabolismo , Humanos , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica
11.
Sci Rep ; 14(1): 9571, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671086

RESUMEN

Primary vitreoretinal lymphoma (PVRL) is a rare subtype of DLBCL and can progress into primary central nervous system lymphoma (PCNSL). To investigate the role of chronic antigenic stimulation in PVRL, we cloned and expressed B-cell receptors (BCR) from PVRL patients and tested for binding against human auto-antigens. SEL1L3, a protein with multiple glycosylation sites, was identified as the BCR target in 3/20 PVRL cases. SEL1L3 induces proliferation and BCR pathway activation in aggressive lymphoma cell lines. Moreover, SEL1L3 conjugated to a toxin killed exclusively lymphoma cells with respective BCR-reactivity. Western Blot analysis indicates the occurrence of hyper-N-glycosylation of SEL1L3 at aa 527 in PVRL patients with SEL1L3-reactive BCRs. The BCR of a PVRL patient with serum antibodies against SEL1L3 was cloned from a vitreous body biopsy at diagnosis and of a systemic manifestation at relapse. VH4-04*07 was used in both lymphoma manifestations with highly conserved CDR3 regions. Both BCRs showed binding to SEL1L3, suggesting continued dependence of lymphoma cells on antigen stimulation. These results indicate an important role of antigenic stimulation by post-translationally modified auto-antigens in the genesis of PVRL. They also provide the basis for a new treatment approach targeting unique lymphoma BCRs with ultimate specificity.


Asunto(s)
Receptores de Antígenos de Linfocitos B , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Glicosilación , Línea Celular Tumoral , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Neoplasias de la Retina/inmunología , Autoantígenos/inmunología , Autoantígenos/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/metabolismo , Femenino , Masculino , Cuerpo Vítreo/metabolismo , Cuerpo Vítreo/patología , Persona de Mediana Edad , Anciano
12.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674157

RESUMEN

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Etopósido , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Etopósido/uso terapéutico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino
13.
Stem Cell Res ; 76: 103373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452707

RESUMEN

Complete loss of RB1 causes retinoblastoma. Here, we report the generation of three RB1-/- iPSC lines using CRISPR/Cas9 based editing at exon 18 of RB1 in a healthy control hiPSC line. The edited cells were clonally expanded, genotyped and characterized to establish the mutant lines. Two of the mutant lines are compound heterozygous, with different in-del mutations in each of their alleles, while the third mutant line is homozygous, with identical edits in both alleles. All lines maintained their stemness, pluripotency, formed embryoid bodies with cell types of all three lineages, displayed a normal karyotype and lost RB1 expression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética
14.
Biomed Pharmacother ; 174: 116437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522240

RESUMEN

Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Proto-Oncogénicas c-mdm2 , ARN Interferente Pequeño , Retinoblastoma , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Retinoblastoma/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos ICR , Femenino
15.
Stem Cell Res ; 76: 103329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335663

RESUMEN

Retinoblastoma is a pediatric intraocular cancer caused by biallelic inactivation of RB1 gene in retinal progenitor cells. Here, we report the generation of a patient-specific induced pluripotent stem cell (iPSC) line (LVPEIi002-A) from a patient diagnosed with retinoblastoma and showing familial inheritance of a nonsense mutation (c.1735C > T) within exon 18 of one of the two alleles. This RB1+/- iPSC line, LVPEIi002-A was generated by reprogramming the peri-orbital fat tissue derived mesenchymal cells and was stably expanded and characterized. It maintains the stemness, pluripotency, normal karyotype, and forms embryoid bodies comprising of all three lineage committed progenitor cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética
16.
Curr Eye Res ; 49(6): 551-564, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38299506

RESUMEN

PURPOSE: Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS: This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS: Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS: Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Neoplasias de la Retina , Retinoblastoma , Retinoblastoma/genética , ARN Largo no Codificante/genética , Humanos , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , MicroARNs/genética , Biomarcadores de Tumor/genética , ARN Endógeno Competitivo
17.
Curr Med Sci ; 44(1): 223-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277016

RESUMEN

OBJECTIVE: Retinoblastoma (RB) is a prevalent type of eye cancer in youngsters. Prospero homeobox 1 (Prox1) is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic, hepatocyte, pancreatic, heart, lens, retinal, and cancer cells. The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance, as well as to explore the underlying Notch1 mechanism. METHODS: Human RB cell lines (SO-RB50 and Y79) and a primary human retinal microvascular endothelial cell line (ACBRI-181) were used in this study. The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction (RT-qPCR) and Western blotting. Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay. Drug-resistant cell lines (SO-RB50/vincristine) were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance. We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1. Finally, a xenograft model was constructed to assess the effect of Prox1 on RB in vivo. RESULTS: Prox1 was significantly downregulated in RB cells. Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine. Notch1 was involved in Prox1's regulatory effects. Notch1 was identified as a target gene of Prox1, which was found to be upregulated in RB cells and repressed by increased Prox1 expression. When pcDNA-Notch1 was transfected, the effect of Prox1 overexpression on RB was removed. Furthermore, by downregulating Notch1, Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo. CONCLUSION: These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1, implying that Prox1 could be a potential therapeutic target for RB.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Medicamentos , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Vincristina/farmacología
18.
Glia ; 72(5): 872-884, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258347

RESUMEN

RB1 deficiency leads to retinoblastoma (Rb), the most prevalent intraocular malignancy. Tumor-associated macrophages (TAMs) are related to local inflammation disorder, particularly by increasing cytokines and immune escape. Microglia, the unique resident macrophages for retinal homeostasis, are the most important immune cells of Rb. However, whether RB1 deficiency affects microglial function remain unknown. In this study, microglia were successfully differentiated from Rb patient- derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), and then we investigated the function of RB1 in microglia by live imaging phagocytosis assay, immunofluorescence, RNA-seq, qRT-PCR, ELISA and retina organoids/microglia co-culturing. RB1 was abundantly expressed in microglia and predominantly located in the nucleus. We then examined the phagocytosis ability and secretion function of iMGs in vitro. We found that RB1 deficiency did not affect the expression of microglia-specific markers or the phagocytic abilities of these cells by live-imaging. Upon LPS stimulation, RB1-deficient microglia displayed enhanced innate immune responses, as evidenced by activated MAPK signaling pathway and elevated expression of IL-6 and TNF-α at both mRNA and protein levels, compared to wildtype microglia. Furthermore, retinal structure disruption was observed when retinal organoids were co-cultured with RB1-deficient microglia, highlighting the potential contribution of microglia to Rb development and potential therapeutic strategies for retinoblastoma.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Retina , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología
19.
Cutan Ocul Toxicol ; 43(1): 69-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37908111

RESUMEN

PURPOSE: Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS: In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS: The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS: These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Mitocondrias , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1003-1013, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37555853

RESUMEN

Retinoblastoma is a prevalent pediatric intraocular tumor. The suppressive effect of gentiopicroside (GPS) has been reported on various tumors. This study sought to determine the effect of GPS on retinoblastoma cell proliferation, apoptosis, invasion, and epithelial-mesenchymal transition (EMT), and tumorigenesis in nude mice. The effect and mechanism of GPS on growth, apoptosis, invasion, and EMT were determined by cell counting kit-8 (CCK-8), western blot, flow cytometry, and transwell assays in retinoblastoma cells. Y79 cells were injected into the vitreous cavity of BALB/c­nude mice to construct a retinoblastoma mouse model. Tumor growth and mouse weight were monitored for sequential 5 weeks. The effect of GPS in vivo was assessed by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and western blot assays. GPS decreased the cell viability of both Y79 and Weri-Rb1 cells with the IC50 of 18.85 µM and 27.57 µM, respectively. Besides, GPS reduced the relative expression of proteins involved in proliferation and EMT, and the number of invading cells, while increased the apoptosis rate and the relative expressions of apoptosis proteins in retinoblastoma cells. Mechanically, GPS decreased the relative protein level of PI3K/AKT pathway, which was then recovered after 740 Y-P was applied. Correspondingly, 740 Y-P reversed the inhibitory effect of GPS on growth, invasion, and EMT, and the increased effect of GPS on apoptosis. Additionally, GPS decreased tumor volume and weight as well as the relative level of Ki-67, VEGF, p-PI3K/PI3K, and p-AKT/AKT, while increased the apoptosis rate in vivo. GPS inhibited retinoblastoma cell proliferation and invasion via deactivating the PI3K/AKT pathway in both cell and animal models.


Asunto(s)
Glucósidos Iridoides , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Animales , Ratones , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Retinoblastoma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Carcinogénesis , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...