Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 39(5): 617-635, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470495

RESUMEN

The olfactory epithelium (OE) possesses unique lifelong neuroregenerative capacities and undergoes constitutive neurogenesis throughout mammalian lifespan. Two populations of stem cells, frequently dividing globose basal cells (GBCs) and quiescent horizontal basal cells (HBCs), readily replace olfactory neurons throughout lifetime. Although lineage commitment and neuronal differentiation of stem cells has already been described in terms of transcription factor expression, little is known about external factors balancing between differentiation and self-renewal. We show here that expression of the CXC-motif chemokine receptor 4 (CXCR4) distinguishes both types of stem cells. Extensive colocalization analysis revealed exclusive expression of CXCR4 in proliferating GBCs and their neuronal progenies. Moreover, only neuronal lineage cells were derived from CXCR4-CreER-tdTomato reporter mice in the OE. Furthermore, Cre-tdTomato mice specific for HBCs (Nestin+ and Cytokeratin14+) did not reduce CXCR4 expression when bred to mice bearing floxed CXCR4 alleles, and did not show labeling of the neuronal cells. CXCR4 and its ligand CXCL12 were markedly upregulated upon induction of GBC proliferation during injury-induced regeneration. in vivo overexpression of CXCL12 did downregulate CXCR4 levels, which results in reduced GBC maintenance and neuronal differentiation. We proved that these effects were caused by CXCR4 downregulation rather than over-activation by showing that the phenotypes of CXCL12-overexpressing mice were highly similar to the phenotypes of CXCR4 knockout mice. Our results demonstrate functional CXCR4 signaling in GBCs regulates cell cycle exit and neural differentiation. We propose that CXCR4/CXCL12 signaling is an essential regulator of olfactory neurogenesis and provide new insights into the dynamics of neurogenesis in the OE.


Asunto(s)
Quimiocina CXCL12/genética , Regeneración Nerviosa/genética , Neurogénesis/genética , Nervio Olfatorio/crecimiento & desarrollo , Receptores CXCR4/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Queratina-14/genética , Ratones , Ratones Noqueados , Nestina/genética , Células-Madre Neurales/citología , Neuronas/citología , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/lesiones , Nervio Olfatorio/metabolismo
2.
Brain Struct Funct ; 219(1): 85-104, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23224251

RESUMEN

The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Neuronas/fisiología , Nervio Olfatorio , Vías Olfatorias , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Bisbenzimidazol , Cazón , Proteínas de Dominio Doblecortina , Proteínas ELAV/metabolismo , Embrión de Mamíferos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Mucosa Olfatoria/crecimiento & desarrollo , Nervio Olfatorio/citología , Nervio Olfatorio/embriología , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/citología , Vías Olfatorias/embriología , Vías Olfatorias/crecimiento & desarrollo , Factor de Transcripción PAX6 , Antígeno Nuclear de Célula en Proliferación/metabolismo
3.
PLoS One ; 8(2): e56561, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437169

RESUMEN

Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Nervio Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Moléculas de Adhesión de Célula Nerviosa , Neurogénesis/genética , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Nervio Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/citología , Especificidad de Órganos/genética , Fosfoproteínas/metabolismo , Terminales Presinápticos/metabolismo , Vía de Señalización Wnt/genética
4.
J Comp Neurol ; 519(18): 3713-26, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21674486

RESUMEN

Neural connections in the adult nervous system are established with a high degree of precision. Several examples throughout the nervous system indicate that this precision is achieved by first establishing an initial exuberant immature pattern of connectivity that is then sculpted into the adult pattern via pruning. This often emerges as an activity-dependent process. In the olfactory system, sensory axons from neurons expressing the same odorant receptor project with high precision to specific glomerular structures in the olfactory bulb. This process undergoes maturation-dependent refinements that are not fully understood. Due to technical impediments that have made it difficult to focus on single axons, it is unknown whether olfactory sensory projections are established in an exuberant fashion. Here we developed a novel technique of electroporation that allowed us to simultaneously label single olfactory sensory neuron (OSN) axonal arbors and their presynaptic specializations. Using this method we were able to incorporate plasmids into OSNs at an immature stage, thereby allowing a time-course study of axonal arbor development and synapse formation in single olfactory sensory axons. We observed that the number of branch points, the total branch length, and the number and density of presynaptic specializations peaked at postnatal day 8 and decreased afterwards. Our data demonstrate that olfactory sensory axons develop in an exuberant way, both in terms of branch growth and synaptic composition. We hypothesize that exuberant branches and synapses are eliminated to achieve the mature pattern in a process likely to be regulated by neural activity.


Asunto(s)
Axones/fisiología , Plasticidad Neuronal/fisiología , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Electroporación/métodos , Ratones , Ratones de la Cepa 129 , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neurópilo/citología , Neurópilo/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Mucosa Olfatoria/citología , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/citología , Plásmidos/administración & dosificación
5.
J Chem Neuroanat ; 41(3): 148-57, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21291997

RESUMEN

We have examined the histogenesis of the olfactory system during turbot development using histological and immunohistochemical methods. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was used to detect dividing cells, whereas calretinin (CR) immunohistochemistry was used to distinguish some neuronal components of the olfactory system. Around hatching, the olfactory placode of embryos transforms into an olfactory pit, which enlarges progressively during development. In metamorphic turbots, the right olfactory organ moves to the tip of the head. Each olfactory chamber opens to the external medium by two nostrils and accessory nasal sacs develop during metamorphosis. The order of birth of olfactory receptor cells in the sensory epithelium follows the pattern of most teleosts: ciliated cells differentiate prior to microvillous cells in turbot larvae, and crypt cells are generated during metamorphosis. Axons of olfactory sensory neurons reach the rostral forebrain by hatching, and calretinin-immunoreactive (CR-ir) glomerular fields were apparent during the subsequent larval development. During metamorphosis olfactory bulbs become strongly distorted by head torsion and glomeruli acquire asymmetric organization. The spatio-temporal course of proliferation in the olfactory system reveals changes in the distribution of dividing cells in the sensory epithelium throughout the developmental period investigated. In the olfactory bulb, proliferative activity becomes restricted to the ventral periventricular zone in turbot larvae, as well as in metamorphic specimens.


Asunto(s)
Peces Planos , Metamorfosis Biológica , Bulbo Olfatorio , Nervio Olfatorio/química , Antígeno Nuclear de Célula en Proliferación/análisis , Células Receptoras Sensoriales/química , Animales , Calbindina 2 , Forma de la Célula/fisiología , Peces Planos/embriología , Peces Planos/crecimiento & desarrollo , Inmunohistoquímica , Larva/citología , Microscopía Electrónica , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/ultraestructura , Nervio Olfatorio/embriología , Nervio Olfatorio/crecimiento & desarrollo , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Prosencéfalo/química , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Proteína G de Unión al Calcio S100/metabolismo , Células Receptoras Sensoriales/metabolismo
6.
BMC Neurosci ; 11: 105, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20738842

RESUMEN

BACKGROUND: EphrinA5 is one of the best-studied members of the Eph-ephrin family of guidance molecules, known to be involved in brain developmental processes. Using in situ hybridization, ephrinA5 mRNA expression has been detected in the retinotectal, the thalamocortical, and the olfactory systems; however, no study focused on the distribution of the protein. Considering that this membrane-anchored molecule may act far from the neuron soma expressing the transcript, it is of a crucial interest to localize ephrinA5 protein to better understand its function. RESULTS: Using immunohistochemistry, we found that ephrinA5 protein is highly expressed in the developing mouse brain from E12.5 to E16.5. The olfactory bulb, the cortex, the striatum, the thalamus, and the colliculi showed high intensity of labelling, suggesting its implication in topographic mapping of olfactory, retinocollicular, thalamocortical, corticothalamic and mesostriatal systems. In the olfactory nerve, we found an early ephrinA5 protein expression at E12.5 suggesting its implication in the guidance of primary olfactory neurons into the olfactory bulb. In the thalamus, we detected a dynamic graduated protein expression, suggesting its role in the corticothalamic patterning, whereas ephrinA5 protein expression in the target region of mesencephalic dopaminergic neurones indicated its involvement in the mesostriatal topographic mapping. Following E16.5, the signal faded gradually and was barely detectable at P0, suggesting a main role for ephrinA5 in primary molecular events in topographic map formation. CONCLUSION: Our work shows that ephrinA5 protein is expressed in restrictive regions of the developing mouse brain. This expression pattern points out the potential sites of action of this molecule in the olfactory, retinotectal, thalamocortical, corticothalamic and mesostriatal systems, during development. This study is essential to better understand the role of ephrinA5 during developmental topographic mapping of connections and to further characterise the mechanisms involved in pathway restoration following cell transplantation in the damaged brain.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/crecimiento & desarrollo , Efrina-A5/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos , Encéfalo/embriología , Genotipo , Inmunohistoquímica , Ratones , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Nervio Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Olfato , Transcripción Genética
7.
Gene Expr Patterns ; 10(7-8): 328-37, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20659588

RESUMEN

The first and secondary olfactory centers in the olfactory pathway in Drosophila are organized into neuropil structures called glomeruli. The antennal lobe (AL), the first olfactory center in larval Drosophila, is organized in 21 glomeruli. Each AL glomerulus receives innervation from a specific olfactory sensory neuron (OSN), and is therefore identifiable anatomically by the position of the OSN terminal. Olfactory projection neurons (PNs) send a dendrite to a single AL glomerulus and an axon that usually terminates in a single glomerulus in the mushroom body (MB) calyx, a secondary olfactory center, and in the lateral horn. By random labeling of single PNs that express GH146-GAL4, it was previously shown that PNs stereotypically innervate specific AL and calyx glomeruli, and most of these connections have been mapped. Here we report the pattern of innervation of GAL4 lines that drive expression of reporter genes in single or a few PNs, including PNs not identified by the widely used GH146-GAL4 driver. We have mapped the AL and calyx glomeruli innervated by these labeled PNs. This study provides a collection of GAL4 lines to molecularly mark the connections between specific AL and calyx glomeruli. It thus confirms and extends the previous map of AL-calyx connectivity that was based only on randomly labeled single PNs, and provides tools for targeted manipulation of specific PNs for developmental and functional studies.


Asunto(s)
Proteínas de Unión al ADN/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Reporteros , Cuerpos Pedunculados/inervación , Neuronas/metabolismo , Vías Olfatorias , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Animales , Antenas de Artrópodos/inervación , Dendritas/genética , Dendritas/metabolismo , Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Cuerpos Pedunculados/metabolismo , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/metabolismo
8.
Neuron Glia Biol ; 6(4): 245-61, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21933469

RESUMEN

In adult olfactory nerves of mammals and moths, a network of glial cells ensheathes small bundles of olfactory receptor axons. In the developing antennal nerve (AN) of the moth Manduca sexta, the axons of olfactory receptor neurons (ORNs) migrate from the olfactory sensory epithelium toward the antennal lobe. Here we explore developmental interactions between ORN axons and AN glial cells. During early stages in AN glial-cell migration, glial cells are highly dye coupled, dividing glia are readily found in the nerve and AN glial cells label strongly for glutamine synthetase. By the end of this period, dye-coupling is rare, glial proliferation has ceased, glutamine synthetase labeling is absent, and glial processes have begun to extend to enwrap bundles of axons, a process that continues throughout the remainder of metamorphic development. Whole-cell and perforated-patch recordings in vivo from AN glia at different stages of network formation revealed two potassium currents and an R-like calcium current. Chronic in vivo exposure to the R-type channel blocker SNX-482 halted or greatly reduced AN glial migration. Chronically blocking spontaneous Na-dependent activity by injection of tetrodotoxin reduced the glial calcium current implicating an activity-dependent interaction between ORNs and glial cells in the development of glial calcium currents.


Asunto(s)
Calcio/metabolismo , Manduca/anatomía & histología , Neuroglía/fisiología , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/fisiología , Animales , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Células Cultivadas , Estimulación Eléctrica , Uniones Comunicantes/ultraestructura , Glutamato-Amoníaco Ligasa/metabolismo , Histonas/metabolismo , Manduca/crecimiento & desarrollo , Potenciales de la Membrana/efectos de los fármacos , Microscopía Electrónica/métodos , Red Nerviosa/fisiología , Neuroglía/ultraestructura , Neuronas Receptoras Olfatorias/efectos de los fármacos , Compuestos Orgánicos/metabolismo , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Sodio , Venenos de Araña/farmacología , Tetrodotoxina/farmacología
9.
Neurosci Res ; 65(3): 286-95, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19666062

RESUMEN

Lipofuscin granules are generally considered as age-pigment. However, we encountered numerous large irregular clusters of lipofuscin granules in the olfactory nerve layer and glomerular layer of the main olfactory bulb (MOB) of young adult and even juvenile mice of C57BL/6J strain. Those numerous autofluorescent irregular lipofuscin granules were contained in the cytoplasm of microglial cells. Importantly they showed a prominent pattern of distribution; that is, they were rather restricted to the OCAM positive ventro-lateral domain (V-domain) of the MOB but few in the OCAM negative dorso-medial domain (D-domain), even when microglia distributed rather homogeneously in both OCAM positive V-domain and OCAM negative D-domain. Those lipofuscin granules were not seen in MOBs of 10 days and 2w old C57BL mice, but usually encountered in the MOBs of 3w old mice. Similar clusters of lipofuscin granules in the olfactory nerve layer and glomerular layer were also encountered in BALB/c strain, and, although less prominent, in ICR and ddY strains. However, they were not encountered in young adult rats of three strains, Wistar, Sprague-Dawley and Long-Evans, indicating one of prominent species differences between mice and rats.


Asunto(s)
Envejecimiento/metabolismo , Lipofuscina/metabolismo , Microglía/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Compuestos Azo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microglía/citología , Microscopía Fluorescente , Naftalenos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/metabolismo , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Especificidad de la Especie , Coloración y Etiquetado/métodos
10.
Dev Dyn ; 238(7): 1768-76, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19517566

RESUMEN

Olfactory sensory neuron (OSN) axons extend from the olfactory epithelium to the olfactory bulb without branching until they reach their target region, the glomerulus. In this report, we present evidence to support the involvement of sonic hedgehog in promoting rat olfactory sensory axons to branch and to enter into the glomerulus. Sonic hedgehog (Shh) protein is detected in the glomeruli of the olfactory bulb, whereas its transcript is expressed in the mitral and tufted cells, suggesting that Shh in the glomeruli is produced by mitral and tufted cells. In primary OSN cultures, Shh-N peptide promotes olfactory axon branching. When Shh function is neutralized in vivo by its antibody, growth of newly generated OSN axons into the glomeruli is vastly reduced.


Asunto(s)
Proteínas Hedgehog/fisiología , Bulbo Olfatorio/embriología , Nervio Olfatorio/crecimiento & desarrollo , Animales , Anticuerpos/metabolismo , Anticuerpos/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/inmunología , Proteínas Hedgehog/metabolismo , Hibridomas/metabolismo , Hibridomas/trasplante , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Nervio Olfatorio/efectos de los fármacos , Nervio Olfatorio/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
11.
Genes Dev ; 23(4): 385-90, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19240127

RESUMEN

Sensory systems generally contain a number of neuronal subtypes that express distinct sensory receptor proteins. This diversity is generated through deterministic and stochastic cell fate choices, while maintaining the subtype often requires a distinct mechanism. In a study published in the February 1, 2009, issue of Genes & Development, Lesch and colleagues (pp. 345-358) describe a new transcription factor, NSY-7, that acts to stabilize a stochastic subtype choice in AWC chemosensory neurons in Caenorhabditis elegans.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Diferenciación Celular , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Transducción de Señal , Procesos Estocásticos , Factores de Transcripción/metabolismo
12.
Brain Res ; 1169: 17-23, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17698047

RESUMEN

Each primary olfactory neuron in the mouse expresses a single type of odorant receptor. All neurons expressing the same odorant receptor gene typically project to two topographically fixed glomeruli, one each on the medial and lateral surfaces of the olfactory bulb. While topographic gradients of guidance receptors and their ligands help to establish the retinotectal projection, similar orthogonal distributions of cues have not yet been detected within the olfactory system. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear whether the olfactory bulb itself provides instructive cues for the establishment of the topographic map. To begin to understand the role of the olfactory bulb in the formation of the olfactory nerve pathway, we developed a model whereby the gross shape of the bulb in the P2-IRES-tau-LacZ line of mice was radically altered during postnatal development. We have shown here that the topography of axons expressing the P2 odorant receptor is dependent on the shape of the olfactory bulb. When the dorsoventral axis of the olfactory bulb was compressed during the early postnatal period, newly developing P2 axons projected to multiple inappropriate glomeruli surrounding their normal target site. These results suggest that the distribution of local guidance cues within the olfactory bulb is influenced by the shape of the olfactory bulb and that these cues contribute to the topographic positioning of glomeruli.


Asunto(s)
Axones/ultraestructura , Tipificación del Cuerpo/genética , Bulbo Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/genética , Animales , Animales Recién Nacidos , Axones/metabolismo , Mapeo Encefálico , Comunicación Celular/genética , Diferenciación Celular/genética , Señales (Psicología) , Desnervación , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Ratones , Ratones Transgénicos , Modelos Neurológicos , Neurópilo/metabolismo , Neurópilo/ultraestructura , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Nervio Olfatorio/citología , Nervio Olfatorio/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Olfato/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura
13.
Brain Res ; 1116(1): 82-92, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16952341

RESUMEN

We investigated age-related changes in the distribution and proliferation of olfactory ensheathing cells (OECs) in postnatal mouse olfactory mucosa. In contrast to reported data on other glial cell types in the peripheral and central nervous systems, OEC cell density in the olfactory nerve bundles in the lamina propria remained almost constant from 10 days through 16 months of age. Electron microscopy of the nerve bundles revealed that axon packing density also was constant during that period. These findings suggest that the ratio of the number of OECs to the unit length of the olfactory neuron axons ensheathed by them does not change markedly throughout the lifetime of mice in an undisturbed condition. By contrast, OEC proliferative density decreased rapidly in the 10-day to 1-month-old period, showing a significant difference, and for the rest of life remained at low level, similar to previous values reported for other glial cell types.


Asunto(s)
Envejecimiento/fisiología , Mucosa Olfatoria/citología , Animales , Animales Recién Nacidos , Antimetabolitos , Axones/fisiología , Bromodesoxiuridina , Recuento de Células , Proliferación Celular , Femenino , Inmunohistoquímica , Cinética , Ratones , Ratones Endogámicos ICR , Microscopía Electrónica , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/inervación , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Fijación del Tejido
14.
Brain Res ; 1119(1): 58-64, 2006 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-16996489

RESUMEN

Primary olfactory axons expressing different odorant receptors are interspersed within the olfactory nerve. However, upon reaching the outer nerve fiber layer of the olfactory bulb they defasciculate, sort out, and refasciculate prior to targeting glomeruli in fixed topographic positions. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear what directs the formation of the nerve fiber and glomerular layers of the olfactory bulb. While the olfactory bulb itself may provide instructive cues for the development of these layers, it is also possible that the incoming axons may simply require the presence of a physical scaffold to establish the outer laminar cytoarchitecture. In order to begin to understand the underlying role of the olfactory bulb in development of the outer layers of the olfactory bulb, we physically ablated the olfactory bulbs in OMP-IRES-LacZ and P2-IRES-tau-LacZ neonatal mice and replaced them with artificial biological scaffolds molded into the shape of an olfactory bulb. Regenerating axons projected around the edge of the cranial cavity at the periphery of the artificial scaffold and were able to form an olfactory nerve fiber layer and, to some extent, a glomerular layer. Our results reveal that olfactory axons are able to form rudimentary cytoarchitectonic layers if they are provided with an appropriately shaped biological scaffold. Thus, the olfactory bulb does not appear to provide any tropic substance that either attracts regenerating olfactory axons into the cranial cavity or induces these axons to form a plexus around its outer surface.


Asunto(s)
Conos de Crecimiento/fisiología , Regeneración Nerviosa/fisiología , Bulbo Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/crecimiento & desarrollo , Prótesis e Implantes , Animales , Materiales Biocompatibles , Desnervación , Conos de Crecimiento/ultraestructura , Ratones , Ratones Transgénicos , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/metabolismo , Olfato/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura , Resultado del Tratamiento
15.
Exp Neurol ; 200(1): 89-103, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16527274

RESUMEN

Cellular transplantation, including olfactory ensheathing cells (OEC) and olfactory nerve fibroblasts (ONF), after experimental spinal cord injury in the rat has previously resulted in regrowth of severed corticospinal (CS) axons across small lesion gaps and partial functional recovery. In order to stimulate CS axon regrowth across large lesion gaps, we used a multifactorial transplantation strategy to create an OEC/ONF continuum in spinal cords with a 2-mm-long dorsal hemisection lesion gap. This strategy involved the use of aligned OEC/ONF-poly(D,L)-lactide biomatrix bridges within the lesion gap and OEC/ONF injections at 1 mm rostral and caudal to the lesion gap. In order to test the effects of this complete strategy, control animals only received injections with culture medium rostral and caudal to the lesion gap. Anatomically, our multifactorial intervention resulted in an enhanced presence of injured CS axons directly rostral to the lesion gap (65.0 +/- 12.8% in transplanted animals versus 13.1 +/- 3.9% in control animals). No regrowth of these axons was observed through the lesion site, which may be related to a lack of OEC/ONF survival on the biomatrices. Furthermore, a 10-fold increase of neurofilament-positive axon ingrowth into the lesion site as compared to untreated control animals was observed. With the use of quantitative gait analysis, a modest recovery in stride length and swing speed of the hind limbs was observed. Although multifactorial strategies may be needed to stimulate repair of large spinal lesion gaps, we conclude that the combined use of OEC/ONF and poly(D,L)-lactide biomatrices is rather limited.


Asunto(s)
Axones/fisiología , Laminina/uso terapéutico , Nervio Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/trasplante , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/cirugía , Animales , Técnicas de Cocultivo , Fibroblastos/citología , Fibroblastos/fisiología , Miembro Posterior/inervación , Laminina/fisiología , Regeneración Nerviosa/fisiología , Nervio Olfatorio/citología , Ratas , Ratas Endogámicas Lew , Traumatismos de la Médula Espinal/patología , Vértebras Torácicas/citología , Vértebras Torácicas/cirugía
16.
J Neurosci ; 26(12): 3281-91, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16554478

RESUMEN

To address the hypothesis that retinoids produced by synthesizing enzymes present in the primary olfactory system influence the mouse olfactory sensory map, we expressed a dominant-negative retinoic acid receptor selectively in olfactory sensory neurons. We show that neurons deficient in nuclear retinoid signaling are responsive to odors and form correct odorant receptor-specific axonal projections to target neurons in the olfactory bulb of the brain. Subsequent to the formation of the map, the neurons die prematurely by retrograde-driven caspase-3 activation, which resembles the previously described mechanism of neural death after olfactory bulb ablation. This neurodegenerative event is initiated the second postnatal week and occurs in the adult animal without a compensatory increase of progenitor cell proliferation. In addition, we find that nuclear retinoid signaling is required for the expression of a retinoic acid-degrading enzyme, Cyp26B1, in a small fraction of mature neurons. Collectively, the results provide evidence for a role of locally regulated retinoid metabolism in neuroprotection and in determining population size of neurons at a late stage of neural circuit formation.


Asunto(s)
Apoptosis/genética , Bulbo Olfatorio/crecimiento & desarrollo , Mucosa Olfatoria/crecimiento & desarrollo , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Ácido Retinoico/genética , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Caspasa 3 , Caspasas/metabolismo , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/citología , Ácido Retinoico 4-Hidroxilasa , Degeneración Retrógrada/genética , Degeneración Retrógrada/metabolismo , Degeneración Retrógrada/fisiopatología , Transducción de Señal/fisiología , Olfato/genética , Tretinoina/metabolismo
17.
J Comp Neurol ; 494(2): 358-67, 2006 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-16320244

RESUMEN

Olfactory sensory neuron (OSN) axonal extension and targeting occur within the olfactory nerve layer (ONL) of the olfactory bulb (OB). The ONL can be differentiated into sublaminae: the outer (ONLo), where axons broadly target regions of the OB in tight fascicles, and inner (ONLi), where axons perform final targeting in loosely organized fascicles. During perinatal development, cadherin-2 and its binding partner, gamma-catenin, are preferentially expressed by OSN axons in the ONLo vs. the ONLi. Given the expression of these cytoskeleton-associated molecules, we hypothesized that cytoskeletal elements of OSN axons may be differentially expressed across the ONL. We therefore examined cytoskeletal organization of OSN axons in the ONL, focusing on the day of birth (P0). We show that microfilaments, microtubules, and the intermediate filament (IF) vimentin are homogeneously expressed across the ONL at P0. In contrast, the IFs peripherin and alpha-internexin are preferentially localized to the ONLo at P0, with alpha-internexin expressed by a restricted subset of OSNs. We also show that OSN axons in the ONLo are significantly smaller than those in the ONLi. The data demonstrate that, as OSN axons begin to exit the ONLo and target a specific region of the OB, there is a down-regulation of cytoskeletal elements and bound extracellular adhesion molecules. The increase in axon diameter may reflect additional mechanisms involved in glomerular targeting or the formation of the large terminal boutons of OSN axons within glomeruli.


Asunto(s)
Citoesqueleto/metabolismo , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/anatomía & histología , Nervio Olfatorio/crecimiento & desarrollo , Animales , Axones/metabolismo , Axones/ultraestructura , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Femenino , Inmunohistoquímica , Hibridación in Situ , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Bulbo Olfatorio/metabolismo , Nervio Olfatorio/metabolismo , Periferinas , Embarazo
18.
J Neurocytol ; 34(1-2): 81-96, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16374711

RESUMEN

Integrins are heterodimeric cell surface receptors that mediate developmental events by binding extracellular matrix ligands. Several lines of evidence suggest a role for integrins, specifically the alpha 6 subunit, in neuronal migration, neurite outgrowth, and axon guidance during olfactory development. Therefore, we undertook an analysis of the expression of the alpha 6 subunit in the olfactory system of the embryonic and early postnatal mouse to understand the role it may play during neural development. In addition, as a functional assay we examined the developmental effects of the loss of this subunit on olfactory development by analyzing an alpha 6 knockout (alpha 6-/-). Immunohistochemical analyses and confocal microscopy were used to examine alpha 6 expression in the CD-1 embryonic and early postnatal olfactory system and also to examine the organization of the olfactory system in the alpha 6-/- mouse. In CD-1 mice from E13 to E17, alpha 6 localizes in radial patterns extending from the core of the olfactory bulb to the nerve layer and colocalizes with RC2, an antibody specific for radial glia. By the day of birth (P0; approximately E19), expression is limited to the external plexiform layer and the olfactory nerve layer, where it colocalizes with laminin and p75. In the alpha 6-/- mouse, areas of ectopic granule cells were observed in the mitral cell layer of the olfactory bulb. These ectopias coincided with areas of disorganization of the radial glial processes and breaks in the mitral cell layer. These observations suggest a role for alpha 6 integrin in neural migration during olfactory development, likely secondary to organization of the radial glial scaffold.


Asunto(s)
Integrina alfa6/análisis , Integrina alfa6/fisiología , Bulbo Olfatorio/química , Bulbo Olfatorio/embriología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Integrina alfa6/genética , Laminina/análisis , Ratones , Ratones Endogámicos , Ratones Noqueados , Microscopía Confocal , Moléculas de Adhesión de Célula Nerviosa/análisis , Bulbo Olfatorio/fisiología , Nervio Olfatorio/química , Nervio Olfatorio/citología , Nervio Olfatorio/crecimiento & desarrollo , Embarazo , Receptor de Factor de Crecimiento Nervioso/análisis
19.
Development ; 132(23): 5211-23, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16267092

RESUMEN

In vertebrate olfactory epithelium (OE), neurogenesis proceeds continuously, suggesting that endogenous signals support survival and proliferation of stem and progenitor cells. We used a genetic approach to test the hypothesis that Fgf8 plays such a role in developing OE. In young embryos, Fgf8 RNA is expressed in the rim of the invaginating nasal pit (NP), in a small domain of cells that overlaps partially with that of putative OE neural stem cells later in gestation. In mutant mice in which the Fgf8 gene is inactivated in anterior neural structures, FGF-mediated signaling is strongly downregulated in both OE proper and underlying mesenchyme by day 10 of gestation. Mutants survive gestation but die at birth, lacking OE, vomeronasal organ (VNO), nasal cavity, forebrain, lower jaw, eyelids and pinnae. Analysis of mutants indicates that although initial NP formation is grossly normal, cells in the Fgf8-expressing domain undergo high levels of apoptosis, resulting in cessation of nasal cavity invagination and loss of virtually all OE neuronal cell types. These findings demonstrate that Fgf8 is crucial for proper development of the OE, nasal cavity and VNO, as well as maintenance of OE neurogenesis during prenatal development. The data suggest a model in which Fgf8 expression defines an anterior morphogenetic center, which is required not only for the sustenance and continued production of primary olfactory (OE and VNO) neural stem and progenitor cells, but also for proper morphogenesis of the entire nasal cavity.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Cavidad Nasal/crecimiento & desarrollo , Nervio Olfatorio/crecimiento & desarrollo , Animales , Desarrollo Embrionario , Factor 8 de Crecimiento de Fibroblastos/fisiología , Ratones , Ratones Mutantes , Mutación , Cavidad Nasal/embriología , Cavidad Nasal/inervación , Neuronas/citología , Nervio Olfatorio/embriología , ARN Mensajero/análisis , Transducción de Señal , Células Madre
20.
J Comp Neurol ; 489(4): 403-24, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16025461

RESUMEN

The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all the modifications take place. Although our results confirm previous works (Reiss and Burd [1997] Semin Cell Dev Biol 8:171-179), we showed for the first time that the main olfactory bulb (MOB) is subdivided into seven zones at Stage 47 plus the accessory olfactory bulb (AOB). These seven zones receive fibers dedicated to aquatic olfaction ("aquatic fibers") and are conserved until Stage 66. At Stage 48 the first fibers dedicated to the aerial olfaction constitute a new dorsomedial zone that grows steadily, pushing the seven original zones ventrolaterally. Only the part of the OB receiving aquatic fibers is fragmented, reminiscent of the organization described in fish. This raises the question of whether such an organization in zones constitutes a plesiomorphy or is linked to aquatic olfaction. We generated a 3D atlas at several stages which are representative of the reorganization process. This will be a useful tool for future studies of development and function.


Asunto(s)
Bulbo Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Xenopus laevis/crecimiento & desarrollo , Animales , Mapeo Encefálico , Carbocianinas , Femenino , Colorantes Fluorescentes , Conos de Crecimiento/fisiología , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Lectinas , Masculino , Metamorfosis Biológica/fisiología , Microscopía Confocal , Bulbo Olfatorio/anatomía & histología , Nervio Olfatorio/anatomía & histología , Vías Olfatorias/anatomía & histología , Neuronas Receptoras Olfatorias/anatomía & histología , Xenopus laevis/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...