Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Headache ; 61(4): 569-575, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749824

RESUMEN

INTRODUCTION: Migraine headache prevalence, etiology, and clinical presentations change from childhood to adulthood. Dural innervation plays a role in headache symptomatology, but the changes in innervation during development have not been fully explored in the literature. METHODS: A narrative literature review on developmental innervation of cranial dura mater in the context of migraine headache. RESULTS: Dural structures, nerve distributions, and pain attributed to migraine headache at varying stages of development are discussed herein with a focus on clinical findings and presentations. CONCLUSIONS: There are many differences in migraine presentation throughout development. Notably, the nervus spinosus and nervus tentorii may play a role in developmental differences in migraine headache presentations between children and adults.


Asunto(s)
Nervios Craneales/crecimiento & desarrollo , Duramadre/crecimiento & desarrollo , Trastornos Migrañosos/epidemiología , Adulto , Niño , Humanos
3.
Exp Brain Res ; 238(1): 111-119, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802149

RESUMEN

After exiting the hindbrain, branchial motor axons reach their targets in association with sensory ganglia. The trigeminal ganglion has been shown to promote motor axon growth from rhombomeres 2/3 and 4/5, but it is unknown whether this effect is ganglion specific and through which signals it is mediated. Here, we addressed these questions by co-cultures of ventral rhombomere 8 explants with cranial and spinal sensory ganglia in a collagen gel matrix. Our results show that all cranial sensory ganglia and even a trunk dorsal root ganglion can promote motor axon growth and that ganglia isolated from older embryos had a stronger effect on the axonal growth than younger ones. We found that brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are necessary and sufficient for this effect. Altogether, our results demonstrate that the promoting effect of sensory ganglia on cranial motor axon growth is stage dependent, but not ganglion specific and is mediated by BDNF and NGF signals.


Asunto(s)
Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Nervios Craneales/crecimiento & desarrollo , Ganglios Sensoriales/crecimiento & desarrollo , Neuronas Motoras/fisiología , Factor de Crecimiento Nervioso/fisiología , Animales , Embrión de Pollo , Ganglios Espinales/crecimiento & desarrollo
4.
Wiley Interdiscip Rev Dev Biol ; 7(6): e324, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29944783

RESUMEN

Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.


Asunto(s)
Vías Auditivas/metabolismo , Tronco Encefálico/metabolismo , Cóclea/metabolismo , Nervios Craneales/metabolismo , Vías Eferentes/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Vías Auditivas/citología , Vías Auditivas/crecimiento & desarrollo , Tronco Encefálico/citología , Tronco Encefálico/crecimiento & desarrollo , Cóclea/citología , Cóclea/crecimiento & desarrollo , Cóclea/inervación , Nervios Craneales/citología , Nervios Craneales/crecimiento & desarrollo , Vías Eferentes/citología , Vías Eferentes/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis/genética , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Neuronas Eferentes/citología , Neuronas Eferentes/metabolismo , Transducción de Señal , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Comp Neurol ; 524(5): 1033-61, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26356988

RESUMEN

During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.


Asunto(s)
Nervios Craneales/embriología , Nervios Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Factor de Transcripción Brn-3B/biosíntesis , Factor de Transcripción Brn-3B/genética , Animales , Nervios Craneales/crecimiento & desarrollo , Femenino , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Embarazo
6.
J Comp Neurol ; 522(10): 2446-64, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24452830

RESUMEN

The vertebrate hindbrain develops as a series of well-defined neuroepithelial segments or rhombomeres. While rhombomeres are visible in all vertebrate embryos, generally there is not any visible segmental anatomy in the brains of adults. Teleost fish are exceptional in retaining a rhombomeric pattern of reticulospinal neurons through embryonic, larval, and adult periods. We use this feature to map more precisely the segmental imprint in the reticular and motor basal hindbrain of adult goldfish. Analysis of serial sections cut in three planes and computer reconstructions of retrogradely labeled reticulospinal neurons yielded a segmental framework compatible with previous reports and more amenable to correlation with surrounding neuronal features. Cranial nerve motoneurons and octavolateral efferent neurons were aligned to the reticulospinal scaffold by mapping neurons immunopositive for choline acetyltransferase or retrogradely labeled from cranial nerve roots. The mapping corresponded well with the known ontogeny of these neurons and helps confirm the segmental territories defined by reticulospinal anatomy. Because both the reticulospinal and the motoneuronal segmental patterns persist in the hindbrain of adult goldfish, we hypothesize that a permanent "hindbrain framework" may be a general property that is retained in adult vertebrates. The establishment of a relationship between individual segments and neuronal phenotypes provides a convenient method for future studies that combine form, physiology, and function in adult vertebrates.


Asunto(s)
Carpa Dorada/anatomía & histología , Carpa Dorada/crecimiento & desarrollo , Neuronas/citología , Rombencéfalo/anatomía & histología , Rombencéfalo/crecimiento & desarrollo , Animales , Colina O-Acetiltransferasa/metabolismo , Nervios Craneales/anatomía & histología , Nervios Craneales/crecimiento & desarrollo , Nervios Craneales/metabolismo , Proteínas de Peces/metabolismo , Carpa Dorada/metabolismo , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Inmunohistoquímica , Mesencéfalo/anatomía & histología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Neuronas Eferentes/citología , Neuronas Eferentes/metabolismo , Formación Reticular/anatomía & histología , Formación Reticular/crecimiento & desarrollo , Formación Reticular/metabolismo , Rombencéfalo/metabolismo , Médula Espinal/anatomía & histología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
7.
Int J Dev Neurosci ; 33: 41-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24280100

RESUMEN

In zebrafish, cranial sensory circuits form by 4 days post-fertilization. We used a forward genetic screen to identify genes involved in the formation of these circuits. In one mutant allele, sl23, axons arising from the epibranchial sensory ganglia do not form their stereotypical terminal fields in the hindbrain. These embryos also had small eyes and deformed jaws, suggesting a pleiotropic effect. Using positional cloning, a 20-nucleotide deletion in the carbamoyl-phosphate-synthetase2-aspartate-transcarbamylase-dihydroorotase (cad) gene was found. Injection of a CAD morpholino phenocopied the mutant and mutants were rescued by injection of cad RNA. Cad activity is required for pyrimidine biosynthesis, and thus is a prerequisite for nucleic acid production and UDP-dependent protein glycosylation. Perturbation of nucleic acid biosynthesis can result in cell death. sl23 mutants did not exhibit elevated cell death, or gross morphological changes, in their hindbrains. To determine if defective protein glycosylation was involved in the aberrant targeting of sensory axons, we treated wild type embryos with tunicamycin, which blocks N-linked protein glycosylation. Interference with glycosylation via tunicamycin treatment mimicked the sl23 phenotype. Loss of cad reveals a critical role for protein glycosylation in cranial sensory circuit formation.


Asunto(s)
Aspartato Carbamoiltransferasa/metabolismo , Nervios Craneales , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Animales Modificados Genéticamente , Aspartato Carbamoiltransferasa/genética , Nervios Craneales/embriología , Nervios Craneales/enzimología , Nervios Craneales/crecimiento & desarrollo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Glicosilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva , Morfolinos/farmacología , Tunicamicina/farmacología , Pez Cebra
8.
Neuroimage ; 54(1): 80-9, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20656042

RESUMEN

The advent of mammalian gene engineering and genetically modified mouse models has led to renewed interest in developing resources for referencing and quantitative analysis of mouse brain anatomy. In this study, we used diffusion tensor imaging (DTI) for quantitative characterization of anatomical phenotypes in the developing mouse brain. As an anatomical reference for neuroscience research using mouse models, this paper presents DTI based atlases of ex vivo C57BL/6 mouse brains at several developmental stages. The atlas complements existing histology and MRI-based atlases by providing users access to three-dimensional, high-resolution images of the developing mouse brain, with distinct tissue contrasts and segmentations of major gray matter and white matter structures. The usefulness of the atlas and database was demonstrated by quantitative measurements of the development of major gray matter and white matter structures. Population average images of the mouse brain at several postnatal stages were created using large deformation diffeomorphic metric mapping and their anatomical variations were quantitatively characterized. The atlas and database enhance our ability to examine the neuroanatomy in normal or genetically engineered mouse strains and mouse models of neurological diseases.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Animales , Nervios Craneales/anatomía & histología , Nervios Craneales/crecimiento & desarrollo , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura
9.
Neural Dev ; 5: 6, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20184720

RESUMEN

BACKGROUND: All-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. RESULTS: Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. CONCLUSIONS: Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.


Asunto(s)
Presión Sanguínea/fisiología , Nervios Craneales/crecimiento & desarrollo , Desarrollo Embrionario/genética , Proteínas del Tejido Nervioso/metabolismo , Presorreceptores/metabolismo , Animales , Presión Sanguínea/genética , Nervios Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Nervio Glosofaríngeo/crecimiento & desarrollo , Nervio Glosofaríngeo/metabolismo , Homocigoto , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/fisiología , Presorreceptores/crecimiento & desarrollo , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Nervio Vago/crecimiento & desarrollo , Nervio Vago/metabolismo
10.
Alcohol ; 43(4): 323-31, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19375881

RESUMEN

The present study tested the hypotheses that vulnerability to ethanol depends upon (1) population-based characteristics of the neuronal progenitors and (2) the maturation of that population by examining the effects of prenatal exposure to ethanol on brainstem nuclei derived from different rhombomeres and from the alar and basal plates. Macaca nemestrina received an ethanol-containing solution 1 day per week during the first 6 (Et6) or 24 (Et24) weeks of gestation. Control animals received an equivalent volume of saline. The treatment regime for some animals included early gastrulation (gestational day [G] 19 or G20), whereas others were treated later (on G21 or G24). Brainstems were cryosectioned and stained with cresyl violet. Stereological methods were used to determine the numbers of neurons in six different nuclei: the abducens, vagal, and hypoglossal motor nuclei and sensory components of the trigeminal brainstem nuclear complex (the principal, oral, and interpolar subnuclei). There were no differences in the numbers of neurons in any of the nuclei between controls and Et6-, or controls and Et24-treated monkeys. In contrast, the number of trigeminal sensory neurons was significantly (P<.05) lower in animals treated on G19/G20 than in control. No differences between controls and monkeys treated on G21/G24 were detected. No motor nuclei exhibited an ethanol-induced change. These data together with data on the trigeminal motor nucleus show that vulnerability to ethanol (1) is greater in sensory nuclei than in motor nuclei and (2) is temporally restricted to the time of gastrulation.


Asunto(s)
Nervios Craneales/efectos de los fármacos , Nervios Craneales/crecimiento & desarrollo , Etanol/administración & dosificación , Macaca nemestrina/crecimiento & desarrollo , Neuronas/efectos de los fármacos , Animales , Nervios Craneales/patología , Etanol/toxicidad , Femenino , Macaca , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Neuronas/patología , Neuronas/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/fisiología , Factores de Tiempo
11.
Zoolog Sci ; 24(8): 829-35, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18217491

RESUMEN

This study was conducted to clarify the development of free neuromasts with growth of the barramundi, Lates calcarifer. A pair of free neuromasts was observed behind the unpigmented eyes in newly hatched eleutheroembryos with a mean total length of 1.93 mm, and two-hour-old eleuthero-embryos could respond to an approaching pipette. At 2 days after hatching, the egg yolk sac was mostly consumed, the eyes were pigmented, and the larvae commenced feeding on rotifers. Free neuromasts increased in number with growth and commenced developing into canal neuromasts in barramundi 15 days old with a mean total length of 8.07 mm. The average length of the major axis of the trunk free neuromasts attained approximately 12.9-15.5 microm, and the number of sensory cells was 15.4-17.5 at 15-20 days old. Developed cupulae of free neuromasts were observed in 1-day-old eleutheroembryos. The direction of maximum sensitivity of free neuromasts, determined from the polarity of the sensory cells, coincided with the minor axis of the lozenge-shaped outline of the apical surface of the free neuromasts. The polarity of trunk neuromasts was usually oriented along the antero-posterior axis of the fish body, but a few had a dorso-ventral direction. On the head, free neuromasts were oriented on lines tangential to concentric circles around the eye.


Asunto(s)
Nervios Craneales , Larva/fisiología , Mecanorreceptores/anatomía & histología , Perciformes/anatomía & histología , Perciformes/fisiología , Animales , Nervios Craneales/anatomía & histología , Nervios Craneales/crecimiento & desarrollo , Nervios Craneales/fisiología , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Mecanorreceptores/crecimiento & desarrollo , Mecanorreceptores/fisiología , Especificidad de la Especie
12.
Anat Rec A Discov Mol Cell Evol Biol ; 288(11): 1201-15, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17031808

RESUMEN

As in other mammals, ontogenesis of the terminal nerve (TN) in the mouse-eared bat (Myotis myotis) starts shortly after the formation of the olfactory placode, a derivative of the ectoderm. During development of the olfactory pit, proliferating neuroblasts thicken the placodal epithelium and one cell population migrates toward the rostroventral tip of the telencephalon. Here they accumulate in a primordial terminal ganglion, which successively divides into smaller units. Initial fibers of the TN can be distinguished from olfactory fibers in the mid-embryonic period. The main TN fiber bundle (mfb) originates from the anteriormost ganglion in the nasal roof, whereas one or more inconstant smaller fiber bundles (sfb) originate from one or more smaller ganglia in the basal part of the rostral nasal septum. The fibers of the mfb and sfbs join in the posterior quarter of the nasal roof before reaching the central ganglion (M) located in the meninges medial to the olfactory bulb. From the mid-fetal period onward, a thin TN fiber bundle with some intermingled perikarya connects M to the brain by penetrating its wall rostral to the olfactory tubercle. Additional smaller ganglia may occur in this region. The TN and its ganglia persist in postnatal and adult bats but the number of perikarya is reduced here. Moreover, the different potential functions of the TN are discussed briefly.


Asunto(s)
Envejecimiento , Quirópteros , Nervios Craneales/embriología , Vías Olfatorias/embriología , Animales , Diferenciación Celular , Proliferación Celular , Tamaño de la Célula , Nervios Craneales/citología , Nervios Craneales/crecimiento & desarrollo , Neuronas , Nariz/citología , Nariz/embriología , Nariz/crecimiento & desarrollo , Nariz/inervación , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo
13.
ScientificWorldJournal ; 6: 1841-50, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17205191

RESUMEN

The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes) first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.


Asunto(s)
Nervios Craneales/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Órganos de los Sentidos/metabolismo , Animales , Nervios Craneales/embriología , Nervios Craneales/crecimiento & desarrollo , Humanos , Modelos Biológicos , Cresta Neural/embriología , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Órganos de los Sentidos/embriología , Órganos de los Sentidos/crecimiento & desarrollo
14.
J Neurosci ; 25(50): 11787-95, 2005 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-16354937

RESUMEN

Cranial motor and sensory nerves arise stereotypically in the embryonic hindbrain, act as sensitive indicators of general and region-specific neuronal development, and are directly or indirectly affected in many human disorders, particularly craniofacial syndromes. The molecular genetic hierarchies that regulate cranial nerve development are mostly unknown. Here, we describe the first mouse genetic screen that has used direct immunohistochemical visualization methods to systematically identify genetic loci required for cranial nerve development. After screening 40 pedigrees, we recovered seven new neurodevelopmental mutations. Two mutations model human genetic syndromes. Mutation 7-1 causes facial nerve anomalies and a reduced lower jaw, and is located in a region of conserved synteny with an interval associated with the micrognathia and mental retardation of human cri-du-chat syndrome. Mutation 22-1 is in the Pax3 gene and, thus, models human Waardenburg syndrome. Three mutations cause global axon guidance deficits: one interferes with initial motor axon extension from the neural tube, another causes overall axon defasciculation, and the third affects general choice point selection. Another two mutations affect the oculomotor nerve specifically. Oculomotor nerve development, which is disrupted by six mutations, appears particularly sensitive to genetic perturbations. Phenotypic comparisons of these mutants identifies a "transition zone" that oculomotor axons enter after initial outgrowth and in which new factors govern additional progress. The number of interesting neurodevelopmental mutants revealed by this small-scale screen underscores the promise of similar focused genetic screens to contribute significantly to our understanding of cranial nerve development and human craniofacial syndromes.


Asunto(s)
Nervios Craneales/embriología , Nervios Craneales/crecimiento & desarrollo , Pruebas Genéticas/métodos , Mutación , Secuencia de Aminoácidos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Embarazo
15.
Brain Behav Evol ; 66(4): 234-54, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16254413

RESUMEN

All vertebrates have a similar series of rhombomeric hindbrain segments within which cranial nerve efferent nuclei are distributed in a similar rostrocaudal sequence. The registration between these two morphological patterns is reviewed here to highlight the conserved vs. variable aspects of hindbrain organization contributing to diversification of efferent sub-nuclei. Recent studies of segmental origins and migrations of branchiomotor, visceromotor and octavolateral efferent neurons revealed more segmental similarities than differences among vertebrates. Nonetheless, discrete variations exist in the origins of trigeminal, abducens and glossopharyngeal efferent nuclei. Segmental variation of the abducens nucleus remains the sole example of efferent neuronal homeosis during vertebrate hindbrain evolution. Comparison of cranial efferent segmental variations with surrounding intrinsic neurons will distinguish evolutionary changes in segment identity from lesser transformations in expression of unique neuronal types. The diversification of motoneuronal subgroups serving new muscles and functions appears to occur primarily by elaboration within and migration from already established segmental efferent pools rather than by de novo specification in different segmental locations. Identifying subtle variations in segment-specific neuronal phenotypes requires studies of cranial efferent organization within highly diverse groups such as teleosts and mammals.


Asunto(s)
Evolución Biológica , Nervios Craneales/fisiología , Vías Eferentes/fisiología , Vertebrados/fisiología , Animales , Nervios Craneales/crecimiento & desarrollo , Vías Eferentes/crecimiento & desarrollo , Femenino , Humanos , Neuronas Eferentes/fisiología , Embarazo , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/fisiología
16.
Anat Embryol (Berl) ; 209(3): 179-92, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15712011

RESUMEN

This study follows the histogenesis of the oropharyngeal cavity taste buds, along with the development of the relevant neural centers and gustatory nerves, in two cichlid species: the substrate-brooding Cichlasoma cyanoguttatum and the mouth-brooding Astatotilapia flavijosephi, from fertilization to 20-day-old juveniles, grown at a temperature of 26 degrees C. Significant differences in pace of development were shown between the two social types: Substrate-brooders complete embryogenesis and hatch 48 h after fertilization (HAF) and begin to swim 120 HAF, with the yolk sac disappearing 160 HAF, whereas mouth-brooders hatch 84 HAF and begin to swim 196 HAF, with the yolk sac disappearing 360 HAF. Histogenesis of primordial taste buds occurs 75 HAF and 160 HAF in C. cyanoguttatum and A. flavijosephi, respectively. Accordingly, the related sensory ganglia and nerves (VII, IX, and X) develop much earlier in the substrate-brooded larvae and postlarvae. Nerve and brain development in juvenile A. flavijosephi of 13 mm total length (TL) closely resemble those of 8-mm-TL C. cyanoguttatum. These differences in development continue throughout the early stages of growth. Similar differences are observed in the ripening and increase in number of taste buds and dentition on the jaws and pharyngeal bones. The possible triggers and causes of such differences in development, as well as the inductors of taste bud development, are discussed.


Asunto(s)
Vías Aferentes/embriología , Encéfalo/embriología , Cíclidos/embriología , Boca/embriología , Células Receptoras Sensoriales/embriología , Papilas Gustativas/embriología , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/ultraestructura , Animales , Conducta Animal/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/ultraestructura , Diferenciación Celular/fisiología , Cíclidos/crecimiento & desarrollo , Cíclidos/fisiología , Nervios Craneales/embriología , Nervios Craneales/crecimiento & desarrollo , Nervios Craneales/ultraestructura , Embrión no Mamífero/embriología , Embrión no Mamífero/ultraestructura , Ganglios Sensoriales/embriología , Ganglios Sensoriales/crecimiento & desarrollo , Ganglios Sensoriales/ultraestructura , Larva/crecimiento & desarrollo , Larva/ultraestructura , Conducta Materna/fisiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Boca/crecimiento & desarrollo , Boca/ultraestructura , Faringe/embriología , Faringe/crecimiento & desarrollo , Faringe/ultraestructura , Células Receptoras Sensoriales/crecimiento & desarrollo , Células Receptoras Sensoriales/ultraestructura , Gusto/fisiología , Papilas Gustativas/crecimiento & desarrollo , Papilas Gustativas/ultraestructura , Diente/embriología , Diente/crecimiento & desarrollo , Diente/ultraestructura
17.
J Comp Neurol ; 482(1): 1-16, 2005 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-15612020

RESUMEN

Taste bud formation in channel catfish is first seen to occur in stage 39 embryos, when taste bud primordia (stage 1), consisting of three to five cells, including a single calretinin-positive cell, can be recognized within the oropharyngeal cavity and maxillary barbels. Within a short time (stage 40), stage 2 taste bud primordia are apparent and include two or three calretinin-positive cells. The number of calretinin-positive cells continues to increase (stage 3), and the primordia begin to erupt as mature taste buds (stage 4) by embryonic stage 48. This same pattern of taste bud development characterizes other regions of the head, with calretinin-positive cells first detected around the mouth and on the other barbels by stage 41 and on the rest of the head by stage 48. The development of trunk taste buds lags far behind that of the head, with the first calretinin-positive cells occurring on the lobes of the caudal fin by stage 48 and on the remaining fins by stage 50. Taste bud primordia on the trunk proper do not begin to appear until stage 53, when the larvae begin to feed, and these receptors begin to erupt only in 1-week-old larvae. Fibers of the facial nerve, which innervate all external taste buds, ramify within the ectoderm prior to the first appearance of taste bud primordia or their precursors.


Asunto(s)
Ictaluridae/crecimiento & desarrollo , Boca/citología , Neuronas Aferentes/metabolismo , Piel/citología , Papilas Gustativas/crecimiento & desarrollo , Animales , Calbindina 2 , Nervios Craneales/citología , Nervios Craneales/embriología , Nervios Craneales/crecimiento & desarrollo , Ictaluridae/embriología , Larva/crecimiento & desarrollo , Boca/embriología , Boca/crecimiento & desarrollo , Boca/inervación , Fibras Nerviosas/fisiología , Proteína G de Unión al Calcio S100/metabolismo , Piel/embriología , Piel/crecimiento & desarrollo , Piel/inervación , Papilas Gustativas/citología , Papilas Gustativas/embriología
18.
Neuroreport ; 15(8): 1321-4, 2004 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15167558

RESUMEN

Developmental changes in expression of two-pore domain K+ channels, TASK-1 and TREK-1, were investigated in the juvenile (postnatal day 13; P13) and adult (P105) rat brain stem and cerebellum using immunohistochemistry. In the juvenile, extensive TASK-1-like immunoreactivity (TASK-1-LIR) was seen among glial cells in the white matter (e.g., radial glia), which showed marked reduction in the adult. In contrast, TASK-1-LIR in neurons including cerebellar Purkinje and granule cells, hypoglossal and facial motoneurons, and ventrolateral medulla neurons was increased in the adult. TASK-1-LIR in neuroglia surrounding peripheral axons of cranial nerves was persistent. TREK-1-LIR was similar between ages, although TREK-1-LIR was neuronal and present only in juvenile cerebellar external germinal layer. Present results suggest roles for TASK-1 and K+ homeostasis in neuro-glial interaction, neurogenesis, differentiation, migration, axon guidance, synaptogenesis and myelination.


Asunto(s)
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/crecimiento & desarrollo , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Nervios Craneales/citología , Nervios Craneales/crecimiento & desarrollo , Nervios Craneales/metabolismo , Regulación hacia Abajo/fisiología , Inmunohistoquímica , Fibras Nerviosas Mielínicas/metabolismo , Proteínas del Tejido Nervioso , Neuroglía/citología , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Ratas , Ratas Wistar , Regulación hacia Arriba/fisiología
19.
Trans Am Ophthalmol Soc ; 102: 373-89, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15747768

RESUMEN

PURPOSE: The clinical and molecular genetic classification of syndromes with congenital limitation of eye movements and evidence of cranial nerve dysgenesis continues to evolve. This monograph details clinical and molecular genetic data on a number of families and isolated patients with congenital fibrosis of the extraocular muscles (CFEOM) and related disorders, and presents an overview of the mechanisms of abnormal patterns of motor and sensory cranial nerve development in these rare syndromes. METHODS: Clinical examination of one patient with CFEOM1, one family with clinical features of CFEOM2, one family with recessive CFEOM3, one family with horizontal gaze palsy and progressive scoliosis (HGPPS), and four patients with various combinations of congenital cranial nerve abnormalities. Genotyping of families with CFEOM and HGPPS for polymorphic markers in the regions of the three known CFEOM loci and in the HGPPS region, and mutation analysis of the ARIX and KIF21A genes in patients with CFEOM were performed according to standard published protocols. RESULTS: The patient with CFEOM1 had the second most common mutation in KIF21A, a 2861 G>A mutation that resulted in an R954Q substitution. The family with CFEOM2 phenotype did not map to the CFEOM2 locus. The family with recessive CFEOM3 did not map to any of the known loci. The HGPPS family mapped to 11q23-q25. One patient had optic nerve hypoplasia and fifth nerve dysfunction. Two patients had the rare combination of Möbius syndrome and CFEOM. One patient had Möbius syndrome and fifth nerve dysfunction. CONCLUSIONS: There is genetic heterogeneity in CFEOM2 and CFEOM3. Abnormalities in sensory nerves can also accompany abnormalities of motor nerves, further substantiating the effect of individual mutations on developing motor as well as sensory cranial nerve nuclei.


Asunto(s)
Nervios Craneales/anomalías , Nervios Craneales/crecimiento & desarrollo , Variación Genética , Oftalmoplejía/genética , Adenina , Adolescente , Adulto , Sustitución de Aminoácidos , Arginina , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 11 , Femenino , Fibrosis , Genes Recesivos , Glutamina , Guanina , Humanos , Cinesinas/genética , Masculino , Síndrome de Mobius/complicaciones , Mutación , Proteínas del Tejido Nervioso/genética , Músculos Oculomotores/patología , Oftalmoplejía/complicaciones , Oftalmoplejía/congénito , Oftalmoplejía/patología , Linaje , Fenotipo , Escoliosis/complicaciones , Escoliosis/genética , Síndrome
20.
Neuroscience ; 116(2): 407-23, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12559096

RESUMEN

Previously, we discovered a novel type of depolarization wave in the embryonic chick brain by using a multiple-site optical recording technique with a fast voltage-sensitive dye. This depolarization wave traveled widely over almost all the region of the CNS. This profile has raised the possibility that the depolarization wave plays some global roles in development of the CNS, rather than contributing to a specific neuronal circuit formation. To obtain more information concerning this issue, in the present study, we examined whether the depolarization wave was triggered by various types of peripheral nerve inputs. Stimulation applied to the vagus, glossopharyngeal, cochlear and trigeminal nerves evoked widely spreading depolarization waves with similar spatiotemporal distribution patterns. The developmental sequence of wave expression was parallel to the development of the excitatory postsynaptic potentials in each sensory nucleus. The depolarization wave was accompanied by a Ca(2+)-wave, suggesting that not only electrical synchrony, but also large-scale Ca(2+)-transients may affect developmental processes in the embryonic brain. Furthermore, we found that the depolarization wave also occurred spontaneously. The waveform and distribution patterns of the spontaneous optical signals were similar to those of the cranial nerve-evoked depolarization wave. These results demonstrated that the depolarization wave in the embryonic chick brain is triggered by multiple sources of external and endogenous activity. This profile supports the idea that this depolarization wave may not serve as a simple regulator of specific neuronal circuit formation, but might play more global roles in CNS development.


Asunto(s)
Tronco Encefálico/embriología , Tronco Encefálico/fisiología , Nervios Craneales/citología , Neuronas Aferentes/fisiología , Animales , Tronco Encefálico/citología , Señalización del Calcio/fisiología , Embrión de Pollo , Nervio Coclear/citología , Nervio Coclear/crecimiento & desarrollo , Nervio Coclear/fisiología , Nervios Craneales/crecimiento & desarrollo , Nervios Craneales/fisiología , Estimulación Eléctrica , Nervio Glosofaríngeo/citología , Nervio Glosofaríngeo/crecimiento & desarrollo , Nervio Glosofaríngeo/fisiología , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Óptica y Fotónica , Nervio Trigémino/citología , Nervio Trigémino/crecimiento & desarrollo , Nervio Trigémino/fisiología , Nervio Vago/citología , Nervio Vago/crecimiento & desarrollo , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...