Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.653
Filtrar
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720270

RESUMEN

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibrosis Pulmonar , Dióxido de Silicio , Simvastatina , Animales , Masculino , Ratas , Acetofenonas/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/prevención & control , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Simvastatina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
2.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710061

RESUMEN

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar , Modelos Animales de Enfermedad , Estrés Oxidativo , Neumonía , Resveratrol , Animales , Resveratrol/farmacología , Estrés Oxidativo/efectos de los fármacos , Displasia Broncopulmonar/prevención & control , Displasia Broncopulmonar/metabolismo , Neumonía/prevención & control , Neumonía/metabolismo , Neumonía/inducido químicamente , Ratas , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Antioxidantes/farmacología , Hiperreactividad Bronquial/prevención & control , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/fisiopatología , Hiperreactividad Bronquial/inducido químicamente , Ratas Sprague-Dawley , Masculino
3.
Elife ; 122024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607373

RESUMEN

Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedades Pulmonares Intersticiales , Neoplasias , Neumonía , Humanos , Linfocitos T CD8-positivos , Neumonía/inducido químicamente , Linfocitos B
4.
PLoS One ; 19(4): e0301931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683829

RESUMEN

OBJECTIVE: Immune checkpoint inhibitor pneumonitis (CIP) is a prevalent form of immunotherapy-induced pulmonary toxicity, ranking among the leading causes of mortality associated with immune checkpoint inhibitors (ICIs). Despite its significance, the risk stratification of CIP in advanced non-small cell lung cancer (NSCLC) remains uncertain. In this study, we conducted a comprehensive analysis, comparing various factors such as histological types, treatment regimens, PD-L1 expression levels, and EGFR/ALK negativity in advanced NSCLC. Our investigation extends to evaluating the relative risk of developing CIP based on previous treatment history. This analysis aims to provide valuable insights for the identification of specific patient subgroups at higher risk, facilitating more effective risk management and precision therapy approaches. METHODS: PubMed, Embase, and Cochrane databases were systematically searched up to February 16, 2023. We conducted a screening of randomized controlled trials (RCTs) that compared ICI monotherapy or its combination with chemotherapy in advanced NSCLC. The trials were categorized based on histological type, treatment regimen, PD-L1 expression level, EGFR/ALK-negative status, and prior treatment history. Subsequently, the data were stratified into five subgroups, and the occurrences of all-grades (1-5) and high-grades (3-5) pneumonia events were extracted. Odds ratios (OR) and corresponding 95% confidence intervals (CI) were then calculated for further analysis. RESULTS: Twenty-two RCTs, encompassing 13,725 patients with advanced NSCLC, were included in this analysis. Regardless of histology (OR = 2.47, 95% CI 1.41-4.33, P = 0.002; OR = 1.84, 95% CI 1.10-3.09, P = 0.02), treatment regimen (OR = 3.27, 95% CI 2.00-5.35, P < 0.00001; OR = 2.91, 95% CI 1.98-4.27, P < 0.00001), PD-L1 expression level (OR = 5.11, 95% CI 2.58-10.12, P < 0.00001; OR = 5.15, 95% CI 2.48-10.70, P < 0.0001), negative EGFR/ALK expression (OR = 4.32, 95% CI 2.22-8.41, P < 0.0001; OR = 3.6, 95% CI 1.56-8.28, P = 0.003), whether there is a history of treatment (OR = 3.27, 95% CI 2.00-5.35, P < 0.00001; OR = 2.74, 95% CI 1.75-4.29, P < 0.0001), ICI use was associated with a higher risk of all-grade (1-5) and high-grade (3-5) pneumonia compared to chemotherapy. Subgroup analysis revealed that the squamous group, the ICI vs. combination chemotherapy (CT) group, the PD-L1 > 50% group, and the previously untreated group had a higher risk of developing all-grade and grade 3-5 CIP (P < 0.05). CONCLUSIONS: In advanced NSCLC, ICI treatment was linked to an elevated risk of pneumonitis across all grades (1-5) as well as high-grade occurrences (3-5) compared to chemotherapy. Notably, individuals with squamous histology and high PD-L1 expression, along with those lacking a history of prior treatment, demonstrated a heightened susceptibility to developing immune-related pneumonitis of all grades (1-5) and high grades (3-5). These observations provide valuable insights for clinicians seeking to enhance the management of pulmonary toxicity associated with immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Neumonía , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neumonía/inducido químicamente , Ensayos Clínicos Controlados Aleatorios como Asunto , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo
5.
Chem Biol Interact ; 394: 111002, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604395

RESUMEN

Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.


Asunto(s)
Asma , Bronquitis , Formaldehído , Fibrosis Pulmonar , Formaldehído/toxicidad , Formaldehído/efectos adversos , Humanos , Asma/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Bronquitis/inducido químicamente , Animales , Exposición a Riesgos Ambientales/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología , Neumonía/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Inflamación/inducido químicamente
6.
Target Oncol ; 19(3): 423-433, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613731

RESUMEN

BACKGROUND: Although osimertinib is a promising therapeutic agent for advanced epidermal growth factor receptor (EGFR) mutation-positive lung cancer, the incidence of pneumonitis is particularly high among Japanese patients receiving the drug. Furthermore, the safety and efficacy of subsequent anticancer treatments, including EGFR-tyrosine kinase inhibitor (TKI) rechallenge, which are to be administered after pneumonitis recovery, remain unclear. OBJECTIVE: This study investigated the safety of EGFR-TKI rechallenge in patients who experienced first-line osimertinib-induced pneumonitis, with a primary focus on recurrent pneumonitis. PATIENTS AND METHODS: We retrospectively reviewed the data of patients with EGFR mutation-positive lung cancer who developed initial pneumonitis following first-line osimertinib treatment across 34 institutions in Japan between August 2018 and September 2020. RESULTS: Among the 124 patients included, 68 (54.8%) patients underwent EGFR-TKI rechallenge. The recurrence rate of pneumonitis following EGFR-TKI rechallenge was 27% (95% confidence interval [CI] 17-39) at 12 months. The cumulative incidence of recurrent pneumonitis was significantly higher in the osimertinib group than in the first- and second-generation EGFR-TKI (conventional EGFR-TKI) groups (hazard ratio [HR] 3.1; 95% CI 1.3-7.5; p = 0.013). Multivariate analysis revealed a significant association between EGFR-TKI type (osimertinib or conventional EGFR-TKI) and pneumonitis recurrence, regardless of severity or status of initial pneumonitis (HR 3.29; 95% CI 1.12-9.68; p = 0.03). CONCLUSIONS: Osimertinib rechallenge after initial pneumonitis was associated with significantly higher recurrence rates than conventional EGFR-TKI rechallenge.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Receptores ErbB , Neoplasias Pulmonares , Neumonía , Inhibidores de Proteínas Quinasas , Humanos , Acrilamidas/uso terapéutico , Acrilamidas/farmacología , Masculino , Femenino , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/efectos adversos , Anciano , Neumonía/inducido químicamente , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Persona de Mediana Edad , Anciano de 80 o más Años , Japón , Indoles , Pirimidinas
7.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613881

RESUMEN

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Asunto(s)
Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Umbeliferonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Neumonía/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
8.
Environ Sci Technol ; 58(20): 8643-8653, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38676641

RESUMEN

Antimicrobial nanomaterials frequently induce inflammatory reactions within lung tissues and prompt apoptosis in lung cells, yielding a paradox due to the inherent anti-inflammatory character of apoptosis. This paradox accentuates the elusive nature of the signaling cascade underlying nanoparticle (NP)-induced pulmonary inflammation. In this study, we unveil the pivotal role of nano-microflora interactions, serving as the crucial instigator in the signaling axis of NP-induced lung inflammation. Employing pulmonary microflora-deficient mice, we provide compelling evidence that a representative antimicrobial nanomaterial, silver (Ag) NPs, triggers substantial motility impairment, disrupts quorum sensing, and incites DNA leakage from pulmonary microflora. Subsequently, the liberated DNA molecules recruit caspase-1, precipitating the release of proinflammatory cytokines and activating N-terminal gasdermin D (GSDMD) to initiate pyroptosis in macrophages. This pyroptotic cascade culminates in the emergence of severe pulmonary inflammation. Our exploration establishes a comprehensive mechanistic axis that interlinks the antimicrobial activity of Ag NPs, perturbations in pulmonary microflora, bacterial DNA release, macrophage pyroptosis, and consequent lung inflammation, which helps to gain an in-depth understanding of the toxic effects triggered by environmental NPs.


Asunto(s)
Neumonía , Piroptosis , Piroptosis/efectos de los fármacos , Ratones , Animales , Neumonía/inducido químicamente , Neumonía/patología , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Macrófagos/efectos de los fármacos , Inflamación
9.
Gene ; 918: 148459, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608794

RESUMEN

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.


Asunto(s)
Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía , Piroptosis , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Neumonía/inducido químicamente , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Susceptibilidad a Enfermedades , Inflamasomas/metabolismo , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
10.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38631890

RESUMEN

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Asunto(s)
Asma , Ozono , Neumonía , Animales , Ratones , Masculino , Ozono/efectos adversos , Adiponectina/farmacología , Pulmón , Neumonía/inducido químicamente , Líquido del Lavado Bronquioalveolar , Receptores Acoplados a Proteínas G , Asma/genética , Quimiocinas/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología
11.
Hum Exp Toxicol ; 43: 9603271241249990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38664950

RESUMEN

The disruption of the immune system by viral attack is a major influencing factor in the lethality of COVID-19. Baicalein is one of the key effective compounds against COVID-19. The molecular mechanisms regarding the anti-inflammatory properties of Baicalein are still unclear. In this study, we established LPS-induced mice to elucidate the role of Baicalein in the treatment of acute lung injury (ALI) and its potential molecular mechanisms. In vivo experiments showed that Baicalein could significantly ameliorate LPS-induced acute lung injury and reduce proteinous edema in lung tissue. In addition, Baicalein inhibited M1 macrophage polarization, promote M2 macrophage polarization, and regulate inflammatory responses. Furthermore, Baicalein could inhibit the expression of protein molecules associated with pyroptosis and mitigate the lung tissue injury. In summary, we revealed the therapeutic effects of Baicalein in acute lung injury, providing the theoretical basis for its clinical application.


Asunto(s)
Lesión Pulmonar Aguda , Flavanonas , Lipopolisacáridos , Macrófagos , Piroptosis , Flavanonas/farmacología , Flavanonas/uso terapéutico , Animales , Piroptosis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/patología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología
12.
Medicine (Baltimore) ; 103(16): e37808, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640289

RESUMEN

Immune checkpoint inhibitor pneumonitis (ICIP) is thought to be a self-limiting disease; however, an effective treatment option does not currently exist. This study aimed to determine the clinical efficacy of combination therapy with glucocorticoids and pirfenidone for ICIP related to programmed cell death protein-1 (PD-1) inhibitors. We conducted a retrospective analysis of 45 patients with advanced non-small cell lung cancer who developed ICIP following PD-1 inhibitor and albumin-bound paclitaxel or carboplatin treatment at our hospital. The PD-1 inhibitor was discontinued, and glucocorticoids were used alone or in combination with pirfenidone to treat ICIP. The relevant clinical data of these patients were collected and analyzed. Compared with the glucocorticoid alone group, the glucocorticoid-pirfenidone group showed significant improvement in forced vital capacity (FVC), carbon monoxide diffusing capacity [%], peripheral capillary oxygen saturation, and 6-minute walk distance (P < .05). There were benefits with respect to the St. George's Respiratory Questionnaire score and the recurrence rate of ICIP, but there was no significant difference between the 2 groups (P > .05). Adding pirfenidone to glucocorticoid treatment was shown to be safe and may be more beneficial than glucocorticoids alone for improving pulmonary interstitial lesions, reversing ICIP, and preventing its recurrence.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Neumonía , Humanos , Estudios Retrospectivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Resultado del Tratamiento , Piridonas/efectos adversos , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico
13.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485102

RESUMEN

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Asunto(s)
Nanotubos de Carbono , Neumonía , Ratones , Animales , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Reacción de Fase Aguda , Líquido del Lavado Bronquioalveolar/química , Pulmón , Neumonía/inducido químicamente , Ratones Endogámicos C57BL
14.
Lung ; 202(2): 179-187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538927

RESUMEN

PURPOSE: Postoperative pneumonia remains a common complication of surgery, despite increased attention. The purpose of our study was to determine the effects of routine surgery and post-surgical opioid administration on airway protection risk. METHODS: Eight healthy adult cats were evaluated to determine changes in airway protection status and for evidence of dysphagia in two experiments. (1) In four female cats, airway protection status was tracked following routine abdominal surgery (spay surgery) plus low-dose opioid administration (buprenorphine 0.015 mg/kg, IM, q8-12 h; n = 5). (2) Using a cross-over design, four naive cats (2 male, 2 female) were treated with moderate-dose (0.02 mg/kg) or high-dose (0.04 mg/kg) buprenorphine (IM, q8-12 h; n = 5). RESULTS: Airway protection was significantly affected in both experiments, but the most severe deficits occurred post-surgically as 75% of the animals exhibited silent aspiration. CONCLUSION: Oropharyngeal swallow is impaired by the partial mu-opioid receptor agonist buprenorphine, most remarkably in the postoperative setting. These findings have implications for the prevention and management of aspiration pneumonia in vulnerable populations.


Asunto(s)
Analgésicos Opioides , Enfermedades de los Gatos , Trastornos de Deglución , Neumonía , Animales , Gatos , Femenino , Masculino , Analgésicos Opioides/efectos adversos , Buprenorfina/efectos adversos , Enfermedades de los Gatos/inducido químicamente , Trastornos de Deglución/etiología , Trastornos de Deglución/veterinaria , Neumonía/inducido químicamente , Neumonía/complicaciones , Neumonía/veterinaria , Estudios Cruzados
15.
Heart Lung ; 65: 59-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432039

RESUMEN

BACKGROUND: Corticosteroid treatment in non-COVID-19 induced Community-acquired pneumonia (CAP) remains inconclusive. OBJECTIVES: We aimed to assess the role of corticosteroid treatment in CAP. METHODS: We conducted a comprehensive search of online databases, including PubMed, Embase, and Cochrane, to identify articles published from January 1, 2000, to May 5, 2023. Double-blind RCTs were selected. Two authors screened studies and extracted data. The evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS: We analyzed data from 12 RCTs, involving 2446 patients. Corticosteroids therapy may reduce short-term mortality in patients with severe CAP (sCAP) and shorten the hospital length of stay in patients with CAP. Furthermore, corticosteroids treatment can decrease the risk of requiring mechanical ventilation, developing septic shock and multiple organ dysfunction syndrome (MODS). There were no significant differences between the corticosteroid and control groups concerning gastrointestinal bleeding and nosocomial infection. The use of corticosteroids could increase the risk of hyperglycemia. CONCLUSION: Corticosteroid treatment for sCAP has the potential to provide benefits in reducing short-term mortality, but this conclusion necessitates more evidence. Besides, we found no evidence that strongly prevents us from using corticosteroids in patients with sCAP or those at risk of progressing to sCAP.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Neumonía , Humanos , Corticoesteroides/efectos adversos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Respiración Artificial , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/inducido químicamente , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
JCO Clin Cancer Inform ; 8: e2300207, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38427922

RESUMEN

PURPOSE: Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS: Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS: The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION: To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.


Asunto(s)
Colitis , Hepatitis , Neumonía , Humanos , Masculino , Persona de Mediana Edad , Femenino , Inhibidores de Puntos de Control Inmunológico , Instituciones de Atención Ambulatoria , Neumonía/inducido químicamente , Neumonía/diagnóstico
17.
Anticancer Drugs ; 35(6): 559-562, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453158

RESUMEN

Pralsetinib and selpercatinib are two highly potent and selective rearranged during transfection (RET) inhibitors that substantially improved the clinical outcome of patients with RET-rearranged non-small cell lung cancer. Treatment with one RET inhibitor after failure of the other is generally not recommended because of cross-resistance mechanisms. We report the case of a patient affected by metastatic RET-rearranged non-small cell lung cancer who experienced long-lasting disease control with pralsetinib. After 13 months from treatment start, the patient developed recurrent drug-related pneumonitis, requiring temporary interruptions and dose reductions and eventually failing to control the disease. Selpercatinib was then started as an off-label treatment, allowing both clinical and radiological intracranial disease control. Selpercatinib was well-tolerated at full dosage, and no pulmonary event occurred. In our case report, after pralsetinib dose reduction due to pulmonary toxicity, the therapeutic switch to selpercatinib allowed the patient to receive a full-dose treatment, eventually restoring disease control. Our case report and a few literature data suggest that switching from pralsetinib to selpercatinib may represent a therapeutic opportunity, especially for patients with brain metastases.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neumonía , Proteínas Proto-Oncogénicas c-ret , Pirazoles , Piridinas , Humanos , Persona de Mediana Edad , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Reordenamiento Génico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neumonía/inducido químicamente , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-ret/genética , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/administración & dosificación , Piridinas/efectos adversos , Piridinas/uso terapéutico , Piridinas/administración & dosificación , Pirimidinas , Femenino
18.
J Coll Physicians Surg Pak ; 34(3): 302-307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462865

RESUMEN

OBJECTIVE: To investigate the clinical characteristics, treatment methods, outcomes, and variables influencing the outcomes of checkpoint inhibitor-related pneumonitis (CIP) among Chinese cancer patients. STUDY DESIGN: Descriptive Study. Place and Duration of the Study: Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China, from January 2019 to December 2022. METHODOLOGY: Patients with CIP were inducted. Clinical data including patient characteristics, ICI protocols; and the clinical features, treatments, and outcomes of CIP were collected and analysed. RESULTS: One hundred and forty-six patients were included. Median time to onset in the CIP was 17.0 weeks (range: 0.4 - 74.7). Mild CIP and severe CIP accounted for 84.93% and 15.07% of cases, respectively. All patients with CIP received methylprednisolone treatment, with an average starting dose of 1.64 mg/kg (0.59-6.00 mg/kg), and 79 (54.11%) of them received anti-infective therapy. One hundred and thirteen (77.04%) patients had improved symptoms of pneumonia, with only 33 (22.60%) patients displaying no improvement. Multivariate analysis revealed that the severity of CIP [OR = 0.167 (95% CI 0.061-0.461), p <0.001] and the starting dose of methylprednisolone [OR = 0.314 (95% CI 0.129-0.764), p <0.001] were independent predictors of outcomes of CIP, while the use of antibiotic was not. CONCLUSION: The severity of CIP and the initial dosage of methylprednisolone administered are significant factors that impact the outcomes of CIP in Chinese cancer patients after ICI treatment. Appropriate use of glucocorticoids and antibiotics is a necessary management strategy to control CIP effectively. KEY WORDS: Immune checkpoint inhibitors, Immune-related adverse events, Checkpoint inhibitor-related pneumonitis, Glucocorticosteroids, Antibiotics, Prognostic factors.


Asunto(s)
Neoplasias Pulmonares , Neumonía , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Pronóstico , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Metilprednisolona , Antibacterianos/efectos adversos , China , Estudios Retrospectivos
19.
Inhal Toxicol ; 36(2): 106-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38477125

RESUMEN

OBJECTIVE: Occupational exposure to respirable crystalline silica (cSiO2) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO2 exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO2 and DHA effects in mature lupus-prone adult mice, more representative of cSiO2-exposed worker age. METHODS: Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO2 weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset. RESULTS: VEH/CON mice showed no pathology. cSiO2/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO2/CON lungs exhibited elevated cellularity, chemokines, CD3+ T-cells, CD45R + B-cells, IgG + plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects. DISCUSSION: The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO2-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO2-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice. CONCLUSION: These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.


Asunto(s)
Ácidos Grasos Omega-3 , Glomerulonefritis , Neumonía , Femenino , Ratones , Humanos , Animales , Ácidos Grasos Omega-3/toxicidad , Autoinmunidad , Dióxido de Silicio/toxicidad , Neumonía/inducido químicamente , Glomerulonefritis/inducido químicamente , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Ácidos Docosahexaenoicos/toxicidad , Quimiocinas/toxicidad , Autoanticuerpos , Inmunoglobulina G
20.
Front Immunol ; 15: 1266850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426102

RESUMEN

The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neumonía , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neumonía/inducido químicamente , Neumonía/diagnóstico , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA