Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.172
Filtrar
1.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961067

RESUMEN

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Asunto(s)
Anticuerpos Antivirales , Reacciones Cruzadas , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Pandemias , Neuraminidasa/inmunología , Neuraminidasa/genética , Animales , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Subtipo H3N2 del Virus de la Influenza A/inmunología , Femenino , Reacciones Cruzadas/inmunología , Ratones , Gripe Humana/inmunología , Gripe Humana/epidemiología , Gripe Humana/virología , Anciano , Subtipo H2N2 del Virus de la Influenza A/inmunología , Subtipo H2N2 del Virus de la Influenza A/genética , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Aves/virología , Persona de Mediana Edad , Gripe Aviar/epidemiología , Gripe Aviar/inmunología , Gripe Aviar/virología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Adulto , Proteínas Virales/inmunología , Proteínas Virales/genética
2.
Front Immunol ; 15: 1425842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915410

RESUMEN

Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Vacunas de Partículas Similares a Virus , Animales , Neuraminidasa/inmunología , Neuraminidasa/genética , Vacunas contra la Influenza/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/administración & dosificación , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Femenino , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Eficacia de las Vacunas , Humanos , Vacunación/métodos
3.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38823390

RESUMEN

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus de la Influenza B , Gripe Humana , Neuraminidasa , Neuraminidasa/inmunología , Humanos , Virus de la Influenza B/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas contra la Influenza/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Replicación Viral/efectos de los fármacos
4.
PLoS One ; 19(5): e0302865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723016

RESUMEN

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Asunto(s)
Anticuerpos Monoclonales , Subtipo H1N1 del Virus de la Influenza A , Neuraminidasa , Neuraminidasa/inmunología , Neuraminidasa/metabolismo , Neuraminidasa/antagonistas & inhibidores , Anticuerpos Monoclonales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Humanos , Animales , Anticuerpos Antivirales/inmunología , Ratones , Subtipo H5N1 del Virus de la Influenza A/inmunología , Ratones Endogámicos BALB C , Antivirales/farmacología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología
5.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38734891

RESUMEN

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.


Asunto(s)
Aves , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Gripe Aviar , Neuraminidasa , Neuraminidasa/inmunología , Neuraminidasa/genética , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Epítopos/inmunología , Epítopos/genética , Aves/virología , Gripe Aviar/inmunología , Gripe Aviar/virología , Deriva y Cambio Antigénico/inmunología , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/prevención & control , Proteínas Virales/inmunología , Proteínas Virales/genética , Proteínas Virales/química , Virus de la Influenza A/inmunología , Virus de la Influenza A/genética
6.
Elife ; 122024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805550

RESUMEN

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Asunto(s)
Antígenos Virales , Hurones , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Neuraminidasa/inmunología , Neuraminidasa/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/enzimología , Humanos , Animales , Antígenos Virales/inmunología , Antígenos Virales/genética , Ratones , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/virología , Anticuerpos Antivirales/inmunología , Vacunas contra la Influenza/inmunología , Variación Antigénica , Proteínas Virales/inmunología , Proteínas Virales/genética , Proteínas Virales/química , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
7.
Virology ; 595: 110097, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685171

RESUMEN

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Asunto(s)
Anticuerpos Antivirales , Protección Cruzada , Hurones , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Vacunas de Partículas Similares a Virus , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Protección Cruzada/inmunología , Anticuerpos Antivirales/inmunología , Neuraminidasa/inmunología , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Ratones , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/genética , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Proteínas Viroporinas , Proteínas Virales
8.
Expert Rev Vaccines ; 23(1): 474-484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38632930

RESUMEN

INTRODUCTION: Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus infection in both human and animal models. The aim of this review is to better understand the mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based influenza vaccines or enhancing immune responses against NA for current influenza vaccines. AREAS COVERED: In this review, the structure of influenza neuraminidase, the contribution of anti-NA immunity to protection, as well as the efforts and challenges of targeting the immune responses to NA were discussed. We also listed some of the newly discovered anti-NA monoclonal antibodies and discussed their contribution in therapeutic as well as the antigen design of a broadly protective NA vaccine. EXPERT OPINION: Targeting the immune response to both HA and NA may be critical for achieving the optimal protection since there are different mechanisms of HA and NA elicited protective immunity. Monoclonal antibodies (mAbs) that target the conserved protective lateral face or catalytic sites are effective therapeutics. The epitope discovery using monoclonal antibodies may benefit NA-based vaccine elicited broadly reactive antibody responses. Therefore, the potential for a vaccine that elicits cross-reactive antibodies against neuraminidase is a high priority for next-generation influenza vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Vacunas contra la Influenza , Gripe Humana , Neuraminidasa , Humanos , Neuraminidasa/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Anticuerpos Monoclonales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Desarrollo de Vacunas , Reacciones Cruzadas/inmunología , Epítopos/inmunología
9.
J Virol ; 97(10): e0105723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800945

RESUMEN

IMPORTANCE: Vaccines that can slow respiratory virus transmission in the population are urgently needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Here, we describe how a recombinant neuraminidase-based influenza virus vaccine reduces transmission in vaccinated guinea pigs in an exposure intensity-based manner.


Asunto(s)
Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Animales , Cobayas , Anticuerpos Antivirales , Virus de la Influenza B , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Recombinantes , Vacunación
10.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
11.
Nat Commun ; 13(1): 7864, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543789

RESUMEN

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Asunto(s)
Anticuerpos Monoclonales , Subtipo H3N2 del Virus de la Influenza A , Neuraminidasa , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Dominio Catalítico/inmunología , Dominio Catalítico/fisiología , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/inmunología , Gripe Humana/metabolismo , Neuraminidasa/química , Neuraminidasa/inmunología
12.
J Virol ; 96(9): e0033222, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35446141

RESUMEN

Influenza virus neuraminidase (NA)-targeting antibodies are an independent correlate of protection against influenza. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1)pdm09 in the presence of human anti-N1 mAbs. We observed escape mutations on the head domain of the N1 protein around the enzymatic site (S364N, N369T, and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D, and Q313K/R). This work increases our understanding of how human antibody responses target the N1 protein. IMPORTANCE As improved influenza virus vaccines are being developed, the influenza virus neuraminidase (NA) is becoming an important new target for immune responses. By identifying novel epitopes of anti-NA antibodies, we can improve vaccine design. Additionally, characterizing escape mutations in these epitopes aids in identifying NA antigenic drift in circulating viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales , Anticuerpos Antivirales/metabolismo , Epítopos/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Mutación , Neuraminidasa/química , Neuraminidasa/genética , Neuraminidasa/inmunología
13.
Viruses ; 14(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216022

RESUMEN

Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/genética , Análisis de Supervivencia , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética
14.
J Virol ; 96(6): e0195921, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107371

RESUMEN

Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Hurones , Hemaglutininas/inmunología , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/normas , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Vacunas de Productos Inactivados/inmunología
15.
PLoS One ; 17(1): e0262873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100294

RESUMEN

Influenza neuraminidase (NA) is implicated in various aspects of the virus replication cycle and therefore is an attractive target for vaccination and antiviral strategies. Here we investigated the potential for NA-specific antibodies to interfere with A(H1N1)pdm09 replication in primary human airway epithelial (HAE) cells. Mouse polyclonal anti-NA sera and a monoclonal antibody could block initial viral entry into HAE cells as well as egress from the cell surface. NA-specific polyclonal serum also reduced virus replication across multiple rounds of infection. Restriction of virus entry correlated with the ability of the serum or monoclonal antibody to mediate neuraminidase inhibition (NI). Finally, human sera with NI activity against the N1 of A(H1N1)pdm09 could decrease H6N1 virus infection of HAE cells, highlighting the potential contribution of anti-NA antibodies in the control of influenza virus infection in humans.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Células Epiteliales , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Neuraminidasa/inmunología , Mucosa Respiratoria , Proteínas Virales/inmunología , Replicación Viral/inmunología , Animales , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Ratones , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
16.
J Virol ; 96(2): e0142121, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34669506

RESUMEN

The public health burden caused by influenza virus infections is not adequately addressed with existing vaccines and antivirals. Identifying approaches that interfere with human-to-human transmission of influenza viruses remains a pressing need. The importance of neuraminidase (NA) activity for the replication and spread of influenza viruses led us to investigate whether broadly reactive human anti-NA monoclonal antibodies (MAbs) could affect airborne transmission of the virus using the guinea pig model. In that model, infection with recent influenza virus clinical isolates resulted in 100% transmission from inoculated donors to recipients in an airborne transmission setting. Anti-NA MAbs were administered either to the inoculated animals on days 1, 2, and 4 after infection or to the naive contacts on days 2 and 4 after donor infection. Administration of NA-1G01, a broadly cross-reactive anti-NA MAb, to either the donor or recipient reduced transmission of the A/New York City/PV02669/2019 (H1N1) and A/New York City/PV01148/2018 (H3N2) viruses. Administration of 1000-3C05, an anti-N1 MAb, to either the donor or recipient reduced transmission of A/New York City/PV02669/2019 (H1N1) virus but did not reduce transmission of A/New York City/PV01148 (H3N2) virus. Conversely, 229-2C06, an anti-N2 MAb, reduced transmission of A/New York City/PV01148 (H3N2) but did not impact transmission of A/New York City/PV02669/2019 (H1N1) virus. Our work demonstrates that anti-NA MAbs could be further developed into prophylactic or therapeutic agents to prevent influenza virus transmission to control viral spread. IMPORTANCE The burden of influenza remains substantial despite unremitting efforts to reduce the magnitude of seasonal influenza epidemics and prepare for pandemics. Although vaccination remains the mainstay of these efforts, current vaccines are designed to stimulate an immune response against the viral hemagglutinin. Interest in the role immunity against neuraminidase plays in influenza virus infection and transmission has recently surged. Human antibodies that bind broadly to neuraminidases of diverse influenza viruses and protect mice against lethal viral challenge have previously been characterized. Here, we show that three such antibodies inhibit the neuraminidase activity of recent isolates and reduce their airborne transmission in a guinea pig model. In addition to contributing to the accumulating support for incorporating neuraminidase as a vaccine antigen, these findings also demonstrate the potential of direct administration of anti-neuraminidase antibodies to individuals infected with influenza virus and to individuals for postexposure prophylaxis to prevent the spread of influenza virus.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Cobayas , Humanos , Inmunización Pasiva , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/transmisión
17.
Front Immunol ; 12: 786617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868073

RESUMEN

Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico , Antígenos Virales/inmunología , Antígenos Virales/ultraestructura , Dominio Catalítico/genética , Dominio Catalítico/inmunología , Protección Cruzada , Evolución Molecular , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/virología , Alphainfluenzavirus/enzimología , Alphainfluenzavirus/genética , Alphainfluenzavirus/inmunología , Betainfluenzavirus/enzimología , Betainfluenzavirus/genética , Betainfluenzavirus/inmunología , Mutación , Nanopartículas , Neuraminidasa/administración & dosificación , Neuraminidasa/genética , Neuraminidasa/ultraestructura , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/ultraestructura , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/ultraestructura
18.
Front Immunol ; 12: 747774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887855

RESUMEN

The highly pathogenic avian influenza H5N1 viruses constantly evolve and give rise to novel variants that have caused widespread zoonotic outbreaks and sporadic human infections. Therefore, vaccines capable of eliciting broadly protective antibody responses are desired and under development. We here investigated the magnitude, kinetics and protective efficacy of the multi-faceted humoral immunity induced by vaccination in healthy adult volunteers with a Matrix M adjuvanted virosomal H5N1 vaccine. Vaccinees were given escalating doses of adjuvanted vaccine (1.5µg, 7.5µg, or 30µg), or a non-adjuvanted vaccine (30µg). An evaluation of sera from vaccinees against pseudotyped viruses covering all (sub)clades isolated from human H5N1 infections demonstrated that the adjuvanted vaccines (7.5µg and 30µg) could elicit rapid and robust increases of broadly cross-neutralizing antibodies against all clades. In addition, the adjuvanted vaccines also induced multifaceted antibody responses including hemagglutinin stalk domain specific, neuraminidase inhibiting, and antibody-dependent cellular cytotoxicity inducing antibodies. The lower adjuvanted dose (1.5µg) showed delayed kinetics, whilst the non-adjuvanted vaccine induced overall lower levels of antibody responses. Importantly, we demonstrate that human sera post vaccination with the adjuvanted (30µg) vaccine provided full protection against a lethal homologous virus challenge in mice. Of note, when combining our data from mice and humans we identified the neutralizing and neuraminidase inhibiting antibody titers as correlates of in vivo protection.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Adulto , Animales , Reacciones Cruzadas , Femenino , Humanos , Inmunización Pasiva , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/inmunología , Saponinas de Quillaja/administración & dosificación , Saponinas de Quillaja/inmunología , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/inmunología , Adulto Joven
19.
Elife ; 102021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878407

RESUMEN

As one of the main influenza antigens, neuraminidase (NA) in H3N2 virus has evolved extensively for more than 50 years due to continuous immune pressure. While NA has recently emerged as an effective vaccine target, biophysical constraints on the antigenic evolution of NA remain largely elusive. Here, we apply combinatorial mutagenesis and next-generation sequencing to characterize the local fitness landscape in an antigenic region of NA in six different human H3N2 strains that were isolated around 10 years apart. The local fitness landscape correlates well among strains and the pairwise epistasis is highly conserved. Our analysis further demonstrates that local net charge governs the pairwise epistasis in this antigenic region. In addition, we show that residue coevolution in this antigenic region is correlated with the pairwise epistasis between charge states. Overall, this study demonstrates the importance of quantifying epistasis and the underlying biophysical constraint for building a model of influenza evolution.


Asunto(s)
Antígenos Virales/inmunología , Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/inmunología , Neuraminidasa/genética , Proteínas Virales/genética , Humanos , Gripe Humana/inmunología , Neuraminidasa/inmunología , Proteínas Virales/inmunología
20.
Sci Rep ; 11(1): 24485, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34966175

RESUMEN

A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human ß-defensin-3 (HßD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).


Asunto(s)
Epítopos/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Aves , Biología Computacional , Simulación por Computador , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad , Gripe Aviar/inmunología , Modelos Inmunológicos , Modelos Moleculares , Neuraminidasa/inmunología , Proteínas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...