Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.987
Filtrar
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724563

RESUMEN

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Asunto(s)
Diferenciación Celular , Neuronas , Transducción de Señal , Temperatura , Animales , Células PC12 , Neuronas/fisiología , Neuronas/citología , Ratones , Ratas , Proyección Neuronal , Neurogénesis/fisiología , Neuritas/metabolismo , Neuritas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Termometría/métodos , Termogénesis/fisiología
2.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643117

RESUMEN

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Neuritas/fisiología , Axones/fisiología , Neuronas
3.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38412382

RESUMEN

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Asunto(s)
Neuritas , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Neuritas/fisiología , Ingeniería de Tejidos/métodos , Regeneración Nerviosa , Proyección Neuronal
4.
J Biomater Sci Polym Ed ; 35(2): 164-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847579

RESUMEN

Type I collagen is a predominant fibrous protein that makes up the extracellular matrix. Collagen enhances cell attachment and is commonly used in three-dimensional culture systems, to mimic the native extracellular environment, for primary sensory neurons such as dorsal root ganglia (DRG). However, the effects of collagen concentration on adult rat DRG neurite growth have not been assessed in a physiologically relevant, three-dimensional culture. This study focuses on the effects of type I collagen used in a methacrylated hyaluronic acid (MAHA)-laminin-collagen gel (triple gel) on primary adult rat DRG explants in vitro. DRGs were cultured in triple gels, and the neurite lengths and number of support cells were quantified. Increased collagen concentration significantly reduced neurite length but did not affect support cell counts. Mechanical properties, fiber diameter, diffusivity, and mesh size of the triple gels with varying collagen concentration were characterized to further understand the effects of type I collagen on hydrogel property that may affect adult rat DRG explants. Gel stiffness significantly increased as collagen concentration increased and is correlated to DRG neurite length. Collagen concentration also significantly impacted fiber diameter but there was no correlation with DRG neurite length. Increasing collagen concentration had no significant effect on mesh size and diffusivity of the hydrogel. These data suggest that increasing type I collagen minimizes adult rat DRG explant growth in vitro while raising gel stiffness. This knowledge can help develop more robust 3D culture platforms to study sensory neuron growth and design biomaterials for nerve regeneration applications.


Asunto(s)
Colágeno Tipo I , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Ganglios Espinales , Neuritas/fisiología , Colágeno/farmacología , Proyección Neuronal , Células Cultivadas
5.
Artículo en Inglés | MEDLINE | ID: mdl-38083674

RESUMEN

Chronic hypoxia is known to be a major cause of neurite length retraction followed be degeneration. Specifically, laser scanning confocal microscopy (LSCM) based-contrast imaging is used for monitoring neuronal morphology under hypoxic condition. Although imaging of neurons using LSCM via differential contrast imaging (DIC) is a powerful tool to identify the neuronal states under degenerative condition, fully automated quantification of neurite length and cell shape remains challenging. In this context, we propose an integrated framework that combines panorama imaging of neuronal morphology using LSCM, and deep learning model that allows automated tracing of neurites and cell shape. First, we establish an in vitro hypoxic model using cobalt chloride treatment of N2A cells and perform the large-scale imaging using DIC optics. Next, we tested the performance of U-Net, U-Net++ and FCN architecture using DIC images, where U-Net and U-Net++ demonstrates robustness and accuracy in tracing neurite length and segmentation of cell shape. The result shows that the U-Net++ is able to depict the difference in cell size and neurite length for control and chronic hypoxic condition. The proposed method was also validated and compared with other CNN models including FCN and U-Net. Moreover, the analysis indicates a significant alteration of cell shape and neurite length under hypoxic condition via deep-learning based automated cell segmentation.Clinical Relevance-The proposed framework assumes importance where quantification of neurite length and cell shape from a large dataset remains challenging due to time-consuming manual segmentation by experts. Specially, the framework based on labeling of a small dataset (15-20 images) can be used to identify the neuronal state under neurodegeneration and image-based assessment of neuroprotective drugs.


Asunto(s)
Aprendizaje Profundo , Neuritas , Humanos , Neuritas/fisiología , Automatización , Hipoxia , Tamaño de la Célula
6.
BMC Neurosci ; 24(1): 56, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875799

RESUMEN

BACKGROUND: Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. RESULTS: ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. CONCLUSIONS: ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.


Asunto(s)
Neuritas , Neuronas , Ratones , Ratas , Animales , Humanos , Neuritas/fisiología , Neurogénesis/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Recuento de Células
7.
J Neurosci ; 43(50): 8637-8648, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37875377

RESUMEN

The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.


Asunto(s)
Encéfalo , Sustancia Blanca , Animales , Humanos , Masculino , Femenino , Lactante , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Neuritas/fisiología , Aprendizaje
8.
Int J Biol Sci ; 19(10): 3226-3248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416774

RESUMEN

Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of NIBP/TRAPPC9, a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Animales , Ratones , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Neuritas/fisiología , Neuronas/metabolismo , Pez Cebra
9.
J Theor Biol ; 571: 111561, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37331648

RESUMEN

Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites, can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which one of several short processes, called neurites, grows to become long, while the others remain short. In this study, we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count, and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously published model for neuronal polarization based on competition for limited resources shares key features with our best-performing minimal model: bistability and negative feedback targeted to the size of random excitations.


Asunto(s)
Axones , Neuronas , Retroalimentación , Neuronas/metabolismo , Axones/fisiología , Neuritas/fisiología
10.
J Biosci Bioeng ; 136(3): 239-245, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37344278

RESUMEN

This study describes a co-culture system of human skin equivalents (HSEs) and dorsal root ganglion (DRG) neurons. We prepared spheroids of mouse DRG neurons with or without Schwann cells (SCs). Spheroids comprising DRG neurons and SCs showed longer neurite extensions than those comprising DRG neurons alone. Neurite extension of more than 1 mm was observed from spheroids cultured inside HSEs, whereas neurite extension was primarily observed on the surface of HSEs from spheroids cultured on HSEs. We propose that our model may be a useful tool for studying neurite extension in the human skin.


Asunto(s)
Neuritas , Neuronas , Humanos , Ratones , Animales , Técnicas de Cocultivo , Neuritas/fisiología , Células de Schwann , Células Cultivadas
11.
Curr Biol ; 33(11): 2315-2320.e2, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37236179

RESUMEN

Axons must project to particular brain regions, contact adjacent neurons, and choose appropriate synaptic targets to form a nervous system. Multiple mechanisms have been proposed to explain synaptic partnership choice. In a "lock-and-key" mechanism, first proposed by Sperry's chemoaffinity model,1 a neuron selectively chooses a synaptic partner among several different, adjacent target cells, based on a specific molecular recognition code.2 Alternatively, Peters' rule posits that neurons indiscriminately form connections with other neuron types in their proximity; hence, neighborhood choice, determined by initial neuronal process outgrowth and position, is the main predictor of connectivity.3,4 However, whether Peters' rule plays an important role in synaptic wiring remains unresolved.5 To assess the nanoscale relationship between neuronal adjacency and connectivity, we evaluate the expansive set of C. elegans connectomes. We find that synaptic specificity can be accurately modeled as a process mediated by a neurite adjacency threshold and brain strata, offering strong support for Peters' rule as an organizational principle of C. elegans brain wiring.


Asunto(s)
Caenorhabditis elegans , Sinapsis , Animales , Caenorhabditis elegans/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Neuritas/fisiología , Encéfalo
12.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176061

RESUMEN

In this study, we revealed a peculiar morphological feature of 50B11 nociceptive sensory neurons in in vitro culture related to the forskolin-induced differentiation of these cells growing upside-down on cover glass supports. Multi-photon non-linear microscopy was applied to monitor increased neurite arborization and elongation. Under live and unstained conditions, second harmonic generation (SHG) microscopy could monitor microtubule organization inside the cells while also correlating with the detection of cellular multi-photon autofluorescence, probably derived from mitochondria metabolites. Although the differentiated cells of each compartment did not differ significantly in tubulin or multi-photon autofluorescence contents, the upturned neurons were more elongated, presenting a higher length/width cellular ratio and longer neurites, indicative of differentiated cells. SHG originating from the axons' microtubules represented a proper tool to study neurons' inverted culture in live conditions without exogenous staining. This work represents the first instance of examining neuronal cell lines growing and differentiated in an upside-down orientation, allowing a possible improvement of 50B11 as a model in physiology studies of sensory neurons in peripheric nervous system disease (e.g., Fabry disease, Friedreich ataxia, Charcot-Marie-Tooth, porphyria, type 1 diabetes, Guillain-Barré syndrome in children) and analgesic drug screening.


Asunto(s)
Axones , Microscopía , Niño , Humanos , Colforsina/farmacología , Axones/fisiología , Neuritas/fisiología , Células Receptoras Sensoriales , Microtúbulos , Diferenciación Celular
13.
J Photochem Photobiol B ; 241: 112681, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870246

RESUMEN

The applications of red-light photobiomodulation (PBM) to enhance neurite growth have been proposed for many years. However, the detailed mechanisms require further studies. In the present work we used a focused red-light spot to illuminate the junction of the longest neurite and the soma of a neuroblastoma cell (N2a), and demonstrated enhanced neurite growth at 620 nm and 760 nm with adequate illumination energy fluences. In contrast, 680 nm light showed no effect on neurite growth. The neurite growth was accompanied with the increase of intracellular reactive oxygen species (ROS). Using Trolox to reduce the ROS level, this red light-induced neurite growth was hindered. Suppressing the activities of cytochrome c oxidase (CCO) by using either a small-molecule inhibitor or siRNA abrogated the red light-induced neurite growth. These results suggest that red light-induced ROS production through the activation of CCO could be beneficial for neurite growth.


Asunto(s)
Complejo IV de Transporte de Electrones , Neuritas , Especies Reactivas de Oxígeno/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Neuritas/fisiología , Luz , Neuronas/metabolismo
15.
J Neurosci Methods ; 386: 109796, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36652975

RESUMEN

BACKGROUND: The directionality analysis of the neurite outgrowths is an important methodology in neuroscience, especially in determining the behavior of neurons grown on silicon substrates. NEW METHOD: Here we aimed to describe the methodology for quantification of the directionality of neurites based on the Fast Fourier Transform (FFT). We performed an image analysis case study that incorporates several software solutions and provides a rapid and precise technique to determine the directionality of neurites. In order to elicit aligned or unaligned neurite growth patterns, we used adult and newborn dorsal root ganglion (DRG) neurons grown on silicon micro-pillar substrates (MPS) with different pillar widths and spacing. RESULTS: Compared to the control glass surfaces the neonatal and adult N52 and IB4 DRG neurites exhibited regular growth patterns more pronounced in the MPS regions with s narrow pillar spacing range. The neurites were preferentially oriented along three directional axes at 30°, 90°, and 150°. CONCLUSION: The proposed methodology showed that FFT analysis is a reliable and easily reproducible method that can be successfully used to test growth patterns of DRG neurites grown on different substrates by considering the direction and angle of the neurites as well as the size of the soma.


Asunto(s)
Ganglios Espinales , Neuritas , Recién Nacido , Humanos , Neuritas/fisiología , Análisis de Fourier , Silicio , Células Cultivadas
16.
J Cell Biol ; 222(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648440

RESUMEN

Mechanical forces actively shape cells during development, but little is known about their roles during neuronal morphogenesis. Developmental neurite pruning, a critical circuit specification mechanism, often involves neurite abscission at predetermined sites by unknown mechanisms. Pruning of Drosophila sensory neuron dendrites during metamorphosis is triggered by the hormone ecdysone, which induces local disassembly of the dendritic cytoskeleton. Subsequently, dendrites are severed at positions close to the soma by an unknown mechanism. We found that ecdysone signaling causes the dendrites to become mechanically fragile. Severing occurs during periods of increased pupal morphogenetic tissue movements, which exert mechanical forces on the destabilized dendrites. Tissue movements and dendrite severing peak during pupal ecdysis, a period of strong abdominal contractions, and abolishing ecdysis causes non-cell autonomous dendrite pruning defects. Thus, our data establish mechanical tearing as a novel mechanism during neurite pruning.


Asunto(s)
Dendritas , Drosophila , Neuritas , Animales , Dendritas/fisiología , Drosophila/crecimiento & desarrollo , Ecdisona/fisiología , Neuritas/fisiología , Células Receptoras Sensoriales/fisiología , Metamorfosis Biológica , Pupa/crecimiento & desarrollo
17.
J Neural Eng ; 20(1)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36608343

RESUMEN

Objective. Regeneration of damaged nerves is required for recovery following nervous system injury. While neural cell behavior may be modified by neuromodulation techniques, the impact of static direct current (DC) magnetic stimulation remains unclear.Approach. This study quantifies the effects of DC magnetostimulation on primary neuronal outgrowthin vitro. The extension of neurites of dorsal root ganglia (DRG) subjected to two different low-strength (mT) static magnetic flux configurations was investigated.Main results. After 3 d of 1 h in-plane (IP) magnetic field stimulation, a 62.5% increase in neurite outgrowth area was seen relative to unstimulated controls. The combined action of in-plane + out-of-plane (IP + OOP) magnetic field application produced a directional outgrowth bias parallel to the IP field direction. At the same time, the diverse magnetic field conditions produced no changes in two soluble neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, released from resident glia.Significance. These results demonstrate the potential for DC magnetostimulation to enhance neuronal regrowth and improve clinical outcomes.


Asunto(s)
Neuritas , Neuronas , Neuritas/fisiología , Neuroglía , Campos Magnéticos , Proyección Neuronal/fisiología , Ganglios Espinales/fisiología , Células Cultivadas , Regeneración Nerviosa
18.
Elife ; 122023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719173

RESUMEN

The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.


Asunto(s)
Pericitos , Ganglio Espiral de la Cóclea , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular , Neuronas/fisiología , Neuritas/fisiología
19.
Curr Biol ; 33(3): 434-448.e8, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36538929

RESUMEN

Pyramidal neurons are a major cell type of the forebrain, consisting of a pyramidally shaped soma with axonal and apicobasal dendritic processes. It is poorly understood how the neuronal soma develops its pyramidal morphology, while generating neurites of the proper shape and orientation. Here, we discovered that the spherical somata of immature neurite-less neurons possess a circumferential wreath-like network of septin filaments, which promotes neuritogenesis by balancing the protrusive activity of lamellipodia and filopodia. In embryonic rat hippocampal and mouse cortical neurons, the septin wreath network consists of curvilinear filaments that contain septins 5, 7, and 11 (Sept5/7/11). The Sept5/7/11 wreath network demarcates a zone of myosin II enrichment and Arp2/3 diminution at the base of filopodial actin bundles. In Sept7-depleted neurons, cell bodies are enlarged with hyperextended lamellae and abnormally shaped neurites that originate from lamellipodia. This phenotype is accompanied by diminished myosin II and filopodia lifetimes and increased Arp2/3 and lamellipodial activity. Inhibition of Arp2/3 rescues soma and neurite phenotypes, indicating that the septin wreath network suppresses the extension of lamellipodia, facilitating the formation of neurites from the filopodia of a consolidated soma. We show that this septin function is critical for developing a pyramidally shaped soma with properly distributed and oriented dendrites in cultured rat hippocampal neurons and in vivo in mouse perinatal cortical neurons. Therefore, the somatic septin cytoskeleton provides a key morphogenetic mechanism for neuritogenesis and the development of pyramidal neurons.


Asunto(s)
Neuritas , Septinas , Ratones , Ratas , Animales , Neuritas/fisiología , Septinas/metabolismo , Seudópodos/metabolismo , Células Piramidales/metabolismo , Morfogénesis , Miosina Tipo II/metabolismo , Células Cultivadas
20.
Biomater Adv ; 144: 213204, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434926

RESUMEN

The microenvironment that cells experience during in vitro culture can often be far removed from the native environment they are exposed to in vivo. To recreate the physiological environment that developing neurites experience in vivo, we combine a well-established model of human neurite development with, functionalisation of both 2D and 3D growth substrates with specific extracellular matrix (ECM) derived motifs displayed on engineered scaffold proteins. Functionalisation of growth substrates provides biochemical signals more reminiscent of the in vivo environment and the combination of this technology with 3D cell culture techniques, further recapitulates the native cellular environment by providing a more physiologically relevant geometry for neurites to develop. This biomaterials approach was used to study interactions between the ECM and developing neurites, along with the identification of specific motifs able to enhance neuritogenesis within this model. Furthermore, this technology was employed to study the process of neurite inhibition that has a detrimental effect on neuronal connectivity following injury to the central nervous system (CNS). Growth substrates were functionalised with inhibitory peptides released from damaged myelin within the injured spinal cord (Nogo & OMgp). This model was then utilised to study the underlying molecular mechanisms that govern neurite inhibition in addition to potential mechanisms of recovery.


Asunto(s)
Biomimética , Neuritas , Humanos , Neuritas/fisiología , Matriz Extracelular , Neuronas , Proyección Neuronal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA