Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.805
Filtrar
1.
FASEB J ; 38(10): e23644, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38738472

RESUMEN

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Asunto(s)
Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Neuroblastoma/inmunología , Neuroblastoma/terapia , Neuroblastoma/patología , Femenino , Humanos , Inmunomodulación , Ratones Endogámicos C57BL
2.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702304

RESUMEN

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Asunto(s)
Diferenciación Celular , Variaciones en el Número de Copia de ADN , Proteína Proto-Oncogénica N-Myc , Cresta Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Femenino , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Aberraciones Cromosómicas , Células Madre Embrionarias Humanas/metabolismo , Transcriptoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
3.
Int Immunopharmacol ; 133: 112145, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38691920

RESUMEN

Treatment strategies for paediatric neuroblastoma as well as many other cancers are limited by the unfavourable tumour microenvironment (TME). In this study, the TMEs of neuroblastoma were grouped by their genetic signatures into four distinct subtypes: immune enriched, immune desert, non-proliferative and fibrotic. An Immune Score and a Proliferation Score were constructed based on the molecular features of the subtypes to quantify the immune microenvironment or malignancy degree of cancer cells in neuroblastoma, respectively. The Immune Score correlated with a patient's response to immunotherapy; the Proliferation Score was an independent prognostic biomarker for neuroblastoma and proved to be more accurate than the existing clinical predictors. This double scoring system was further validated and the conserved molecular pattern associated with immune landscape and malignancy degree was confirmed. Axitinib and BI-2536 were confirmed as candidate drugs for neuroblastoma by the double scoring system. Both in vivo and in vitro experiments demonstrated that axitinib-induced pyroptosis of neuroblastoma cells activated anti-tumour immunity and inhibited tumour growth; BI-2536 induced cell cycle arrest at the S phase in neuroblastoma cells. The comprehensive double scoring system of neuroblastoma may predict prognosis and screen for therapeutic strategies which could provide personalized treatments.


Asunto(s)
Axitinib , Inmunoterapia , Neuroblastoma , Microambiente Tumoral , Neuroblastoma/inmunología , Neuroblastoma/terapia , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Humanos , Microambiente Tumoral/inmunología , Pronóstico , Animales , Inmunoterapia/métodos , Línea Celular Tumoral , Axitinib/uso terapéutico , Niño , Masculino , Femenino , Preescolar , Ratones , Lactante , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos
4.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714539

RESUMEN

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Asunto(s)
Hexoquinasa , Neuroblastoma , Macrófagos Asociados a Tumores , Neuroblastoma/metabolismo , Neuroblastoma/patología , Humanos , Hexoquinasa/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CXC/metabolismo , Animales , Microambiente Tumoral/inmunología
5.
PLoS One ; 19(5): e0303136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743689

RESUMEN

Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.


Asunto(s)
Macrófagos , Fármacos Neuroprotectores , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Animales , Superóxido Dismutasa/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Fármacos Neuroprotectores/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Neuroblastoma/inmunología , Neuroblastoma/patología , Línea Celular Tumoral , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología
6.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745192

RESUMEN

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Proteína 28 que Contiene Motivos Tripartito , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ratones , Animales , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Línea Celular Tumoral , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Adenosina/análogos & derivados , Adenosina/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732012

RESUMEN

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Asunto(s)
Catequina , MicroARNs , Neuroblastoma , Proteínas de Unión al ARN , Catequina/análogos & derivados , Catequina/farmacología , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
8.
Front Immunol ; 15: 1371345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558810

RESUMEN

Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αß T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.


Asunto(s)
Células T Asesinas Naturales , Neuroblastoma , Receptores Quiméricos de Antígenos , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Neuroblastoma/patología , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Microambiente Tumoral
9.
Clin Nucl Med ; 49(5): 438-441, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574255

RESUMEN

ABSTRACT: 123I-meta-iodobenzylguanidine (123I-MIBG) is extensively used for initial staging and response evaluation in children with neuroblastoma. Physiological uptake of 123I-MIBG occurs in the salivary glands, liver, adrenal gland, myocardium, bowel, and thyroid gland. 123I-MIBG cannot cross an intact blood-brain barrier. We present the rare case of a 3-year-old boy with neuroblastoma and meningeal metastases who underwent an 123I-MIBG scan for disease restaging that showed abnormal brain uptake. Abnormal MIBG uptake in the brain can occur if there is disruption of the blood-brain barrier either secondary to metastases or after damage to blood-brain barrier.


Asunto(s)
Yodobencenos , Neuroblastoma , Niño , Masculino , Humanos , Preescolar , 3-Yodobencilguanidina , Cintigrafía , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
10.
BMC Complement Med Ther ; 24(1): 148, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580956

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked ß-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS: This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or ß-amyloid peptide (Aß25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS: Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aß25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION: These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aß25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.


Asunto(s)
Neuroblastoma , Reishi , Humanos , Peróxido de Hidrógeno/toxicidad , Acetilcolinesterasa , Neuroblastoma/patología , Antioxidantes/farmacología , Péptidos beta-Amiloides/toxicidad , Etanol , Agua
11.
Pediatr Surg Int ; 40(1): 98, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581446

RESUMEN

INTRODUCTION: Historically, neuroblastoma has been diagnosed by surgical open biopsy (SB). In recent decades, core needle biopsy (CNB) has replaced surgical biopsy due to its safe and adequate method of obtaining tissue diagnosis. AIM: Our study aimed to assess the effectiveness of CNB in obtaining tissue diagnosis for neuroblastoma and evaluate its safety profile in terms of post-operative complications, in comparison to SB. METHODS: A retrospective cohort study, including all patients younger than 18 years who were diagnosed with neuroblastoma from 2012 until 2022 in a single tertiary medical center. Patients' demographics, tumor size and location, pathological results, and clinical outcomes were collected. RESULTS: 79 patients were included in our study: 35 biopsies were obtained using image-guided CNB and 44 using SB. Patients' and tumor characteristics including age, gender, tumor volume, and stage were similar in both groups. The biopsy adequacy rate in the CNB group was 91% and 3 patients in this group underwent repeated biopsy. The safety profile in the CNB group was similar to the SB group. CONCLUSIONS: CNB is a safe method and should be considered the first choice for obtaining tissue diagnosis when feasible due to its high adequacy in terms of tumor histopathological features.


Asunto(s)
Biopsia Guiada por Imagen , Neuroblastoma , Humanos , Niño , Biopsia con Aguja Gruesa/métodos , Estudios Retrospectivos , Biopsia Guiada por Imagen/métodos , Neuroblastoma/diagnóstico , Neuroblastoma/cirugía , Neuroblastoma/patología , Complicaciones Posoperatorias
12.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653778

RESUMEN

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Asunto(s)
Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Factores de Transcripción SOXC , Tretinoina , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Linaje de la Célula/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
13.
Methods Mol Biol ; 2806: 55-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676796

RESUMEN

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.


Asunto(s)
Neuroblastoma , Rabdomiosarcoma , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neuroblastoma/patología , Neuroblastoma/genética , Rabdomiosarcoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Niño , Modelos Animales de Enfermedad , Xenoinjertos , Medicina de Precisión/métodos , Línea Celular Tumoral
16.
Neoplasia ; 52: 100997, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38669760

RESUMEN

Neurodevelopmental cell communication plays a crucial role in neuroblastoma prognosis. However, determining the impact of these communication pathways on prognosis is challenging due to limited sample sizes and patchy clinical survival information of single cell RNA-seq data. To address this, we have developed the cell communication pathway prognostic model (CCPPM) in this study. CCPPM involves the identification of communication pathways through single-cell RNA-seq data, screening of prognosis-significant pathways using bulk RNA-seq data, conducting functional and attribute analysis of these pathways, and analyzing the post-effects of communication within these pathways. By employing the CCPPM, we have identified ten communication pathways significantly influencing neuroblastoma, all related to axongenesis and neural projection development, especially the BMP7-(BMPR1B-ACVR2B) communication pathway was found to promote tumor cell migration by activating the transcription factor SMAD1 and regulating UNK and MYCBP2. Notably, BMP7 expression was higher in neuroblastoma samples with distant metastases. In summary, CCPPM offers a novel approach to studying the influence of cell communication pathways on disease prognosis and identified detrimental communication pathways related to neurodevelopment.


Asunto(s)
Comunicación Celular , Neuroblastoma , Transducción de Señal , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/genética , Humanos , Pronóstico , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual/métodos , Biología Computacional/métodos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/genética , Movimiento Celular
17.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653965

RESUMEN

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Asunto(s)
Quinasa de Linfoma Anaplásico , Dibenzocicloheptenos , Farnesiltransferasa , GTP Fosfohidrolasas , MicroARNs , Neuroblastoma , Piperidinas , Inhibidores de Proteínas Quinasas , Piridinas , Animales , Femenino , Humanos , Ratones , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Yonsei Med J ; 65(5): 293-301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653568

RESUMEN

PURPOSE: This study aimed to predict high-risk neuroblastoma among neuroblastic tumors using radiomics features extracted from MRI. MATERIALS AND METHODS: Pediatric patients (age≤18 years) diagnosed with neuroblastic tumors who had pre-treatment MR images available were enrolled from institution A from January 2010 to November 2019 (training set) and institution B from January 2016 to January 2022 (test set). Segmentation was performed with regions of interest manually drawn along tumor margins on the slice with the widest tumor area by two radiologists. First-order and texture features were extracted and intraclass correlation coefficients (ICCs) were calculated. Multivariate logistic regression (MLR) and random forest (RF) models from 10-fold cross-validation were built using these features. The trained MLR and RF models were tested in an external test set. RESULTS: Thirty-two patients (M:F=23:9, 26.0±26.7 months) were in the training set and 14 patients (M:F=10:4, 33.4±20.4 months) were in the test set with radiomics features (n=930) being extracted. For 10 of the most relevant features selected, intra- and inter-observer variability was moderate to excellent (ICCs 0.633-0.911, 0.695-0.985, respectively). The area under the receiver operating characteristic curve (AUC) was 0.94 (sensitivity 67%, specificity 91%, and accuracy 84%) for the MLR model and the average AUC was 0.83 (sensitivity 44%, specificity 87%, and accuracy 75%) for the RF model from 10-fold cross-validation. In the test set, AUCs of the MLR and RF models were 0.94 and 0.91, respectively. CONCLUSION: An MRI-based radiomics model can help predict high-risk neuroblastoma among neuroblastic tumors.


Asunto(s)
Imagen por Resonancia Magnética , Neuroblastoma , Humanos , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/patología , Imagen por Resonancia Magnética/métodos , Proyectos Piloto , Femenino , Masculino , Preescolar , Lactante , Niño , Curva ROC , Modelos Logísticos , Adolescente , Radiómica
19.
J Pediatr Endocrinol Metab ; 37(5): 482-485, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38618883

RESUMEN

OBJECTIVES: Childhood cancer survivors are at risk for premature ovarian insufficiency, especially after treatment with alkylating agents. The objective of this report is to highlight a case in which this phenomenon caused a false-positive pregnancy test. CASE PRESENTATION: A workup was performed in a 14-year-old girl with a positive pregnancy test. She was diagnosed with stage IV neuroblastoma of the left adrenal gland at the age of 4 years. She received extensive treatment, including alkylating agents, and had been diagnosed with premature ovarian insufficiency. An LH/hCG suppression test was performed using high dose 17 bèta-estradiol: hCG levels normalized. CONCLUSIONS: The pregnancy test was false-positive due to production of low amounts of hCG by the pituitary gland as a result of high LH concentrations following premature ovarian insufficiency. It may be helpful to perform the LH/hCG suppression test to prove pituitary origin of the hCG overproduction.


Asunto(s)
Insuficiencia Ovárica Primaria , Humanos , Femenino , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/patología , Adolescente , Embarazo , Pruebas de Embarazo , Neuroblastoma/complicaciones , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/patología , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Reacciones Falso Positivas , Hormona Luteinizante/sangre , Pronóstico
20.
Clin Nucl Med ; 49(6): 600-603, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584349

RESUMEN

ABSTRACT: A 7-year-old girl with known brain metastasis from neuroblastoma developed new onset of severe headache. A brain MRI confirmed known metastasis in the right frontal lobe of the brain without new abnormalities. The patient was enrolled in a clinical trial using 18 F-MFBG PET/CT to evaluate patients with neuroblastoma. The images confirmed abnormal activity in the known lesion in the right frontal lobe. In addition, the PET showed additional foci of abnormal activity in the left cerebellopontine region. A follow-up brain MRI study acquired 4 months later revealed abnormal signals in the same region.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Neuroblastoma , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Niño , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA