Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.623
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731859

RESUMEN

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Asunto(s)
Ácido Fólico , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Pez Cebra , Animales , Compuestos Heterocíclicos con 3 Anillos/farmacología , Ácido Fólico/metabolismo , Oxazinas/farmacología , Piridonas/farmacología , Piperazinas/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Defectos del Tubo Neural/inducido químicamente , Neurogénesis/efectos de los fármacos , Femenino
2.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739166

RESUMEN

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patología
3.
Neuron ; 112(9): 1373-1375, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697018

RESUMEN

Maternal well-being is important for the development of the fetus, with a key influence on its nervous system. In this issue of Neuron, Krontira et al.1 implicate glucocorticoids, the stress hormones, in the regulation of neural stem cell identity and proliferation, with long-lasting consequences on brain architecture and educational attainment.


Asunto(s)
Glucocorticoides , Neurogénesis , Humanos , Glucocorticoides/farmacología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Células-Madre Neurales/efectos de los fármacos
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732109

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Asunto(s)
Diferenciación Celular , Melatonina , Células Madre Mesenquimatosas , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Tejido Adiposo/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/citología , Neuroglía/metabolismo , Sinapsinas/metabolismo
5.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615859

RESUMEN

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Asunto(s)
Gelatina , Ácido Hialurónico , Janus Quinasa 2 , Enfermedades Neuroinflamatorias , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Animales , Ratones , Recuperación de la Función/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Gelatina/química , Gelatina/farmacología , Janus Quinasa 2/metabolismo , Dextranos/química , Andamios del Tejido/química , Microesferas , Factor de Transcripción STAT3/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Animales de Enfermedad , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Hidrogeles/química , Hidrogeles/farmacología
6.
Pharmacol Ther ; 258: 108641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583670

RESUMEN

Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.


Asunto(s)
Demencia , Trastorno Depresivo Mayor , Enfermedades Neurodegenerativas , Neurogénesis , Psilocibina , Humanos , Demencia/prevención & control , Demencia/tratamiento farmacológico , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Trastorno Depresivo Mayor/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Psilocibina/uso terapéutico , Psilocibina/farmacología , Hipocampo/efectos de los fármacos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Microglía/efectos de los fármacos
7.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649932

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Asunto(s)
Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Neurogénesis , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Ratones , Neurogénesis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Complicaciones Cognitivas Postoperatorias/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Succinatos/farmacología , Succinatos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Anestesia
8.
Transl Neurodegener ; 13(1): 24, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671492

RESUMEN

BACKGROUND: Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer's disease (AD). METHODS: In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. RESULTS: Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5'UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CONCLUSIONS: CPE may regulate adult hippocampal neurogenesis via the CPE-BDNF-TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.


Asunto(s)
Enfermedad de Alzheimer , Carboxipeptidasa H , Hipocampo , Trastornos de la Memoria , Neurogénesis , Regulación hacia Arriba , Animales , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Enfermedad de Alzheimer/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Carboxipeptidasa H/genética , Carboxipeptidasa H/biosíntesis , Ratones , Trastornos de la Memoria/genética , Trastornos de la Memoria/etiología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , MicroARNs/genética , MicroARNs/biosíntesis , Masculino , Ratones Transgénicos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
9.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667284

RESUMEN

This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.


Asunto(s)
Proliferación Celular , Cognición , Proteína Doblecortina , Ketamina , Neuronas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido Y , Receptores de Neuropéptido , Animales , Masculino , Ketamina/farmacología , Ketamina/administración & dosificación , Cognición/efectos de los fármacos , Ratas , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proliferación Celular/efectos de los fármacos , Receptor trkB/agonistas , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Neurogénesis/efectos de los fármacos
10.
Acta Biomater ; 180: 308-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615813

RESUMEN

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Asunto(s)
Matriz Extracelular , Factor Neurotrófico Derivado de la Línea Celular Glial , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Remielinización , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neurogénesis/efectos de los fármacos , Remielinización/efectos de los fármacos , Matriz Extracelular/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratas , Femenino , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
11.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629703

RESUMEN

The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.


Asunto(s)
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacología , Humanos , Animales , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Islotes Olfatorios/efectos de los fármacos , Islotes Olfatorios/metabolismo , Neurogénesis/efectos de los fármacos
12.
Phytomedicine ; 128: 155362, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522312

RESUMEN

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Asunto(s)
Quimiocina CXCL12 , Glucósidos Iridoides , Accidente Cerebrovascular Isquémico , Neurogénesis , Ratas Sprague-Dawley , Receptores CXCR4 , Rehmannia , Animales , Glucósidos Iridoides/farmacología , Receptores CXCR4/metabolismo , Neurogénesis/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Masculino , Rehmannia/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Células-Madre Neurales/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratas , Fármacos Neuroprotectores/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Angiogénesis
13.
Biomed Pharmacother ; 174: 116460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520864

RESUMEN

Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study. SHPL-49 activated the brain-derived neurotrophic factor (BDNF) pathway, decreased the number of degenerated neurons, and accelerated neurogenesis in rats with cerebral ischemia. In addition, SHPL-49 promoted the polarization of microglia toward the M2 phenotype to alleviate neuroinflammation. In BV2 cells, SHPL-49 upregulated CD206 mRNA and protein levels and inhibited CD86 mRNA and protein levels. SHPL-49 also increased neurotrophic factor secretion in BV2 cells, which indirectly promoted the survival of primary neurons after oxygen-glucose deprivation (OGD). Proteomics analysis revealed that SHPL-49 promoted growth-associated protein 43 (Gap43) expression. SHPL-49 enhanced synaptic plasticity and increased Gap43 protein levels via activation of the BDNF pathway in the OGD primary neuron model. These results indicate that SHPL-49 prevents cerebral ischemic injury by activating neurotrophic factor pathways and altering microglial polarization. Thus, SHPL-49 is a potential neuroprotective agent.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Proteína GAP-43 , Glucósidos , Microglía , Neuronas , Fármacos Neuroprotectores , Fenoles , Ratas Sprague-Dawley , Receptor trkB , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Glucósidos/farmacología , Fenoles/farmacología , Masculino , Ratas , Proteína GAP-43/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Receptor trkB/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Neurogénesis/efectos de los fármacos , Ratones
14.
Glia ; 72(7): 1273-1289, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515286

RESUMEN

Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.


Asunto(s)
Hipocampo , Microglía , Neurogénesis , Tamoxifeno , Animales , Tamoxifeno/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Masculino , Ratones Transgénicos , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología
15.
Glia ; 72(7): 1236-1258, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515287

RESUMEN

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Asunto(s)
Proliferación Celular , Células Ependimogliales , Proteínas Inhibidoras de la Diferenciación , Retina , Animales , Proliferación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proteínas Inhibidoras de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Retina/metabolismo , Retina/citología , Células Ependimogliales/metabolismo , Células Ependimogliales/fisiología , Neurogénesis/fisiología , Neurogénesis/efectos de los fármacos , Embrión de Pollo , Células-Madre Neurales/metabolismo , Pollos , Neuroglía/metabolismo , Células Madre/metabolismo , Células Madre/fisiología
16.
J Chem Neuroanat ; 137: 102414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490283

RESUMEN

Rat offspring who are exposed to an amorphous formula of curcumin (CUR) from the embryonic stage have anti-anxiety-like behaviors, enhanced fear extinction learning, and increased synaptic plasticity in the hippocampal dentate gyrus (DG). In the present study, we investigated the links between genes with altered methylation status in the neurogenic niche and enhanced neural functions after CUR exposure. We conducted methylation and RNA sequencing analyses of the DG of CUR-exposed rat offspring on day 77 after delivery. Methylation status and transcript levels of candidate genes were validated using methylation-sensitive high-resolution melting and real-time reverse-transcription PCR, respectively. In the CUR group, we confirmed the hypermethylation and downregulation of Gpr150, Mmp23, Rprml, and Pcdh8 as well as the hypomethylation and upregulation of Ppm1j, Fam222a, and Opn3. Immunohistochemically, reprimo-like+ hilar cells and protocadherin-8+ granule cells were decreased and opsin-3+ hilar cells were increased by CUR exposure. Both reprimo-like and opsin-3 were partially expressed on subpopulations of glutamic acid decarboxylase 67+ γ-aminobutyric acid-ergic interneurons. Furthermore, the transcript levels of genes involved in protocadherin-8-mediated N-cadherin endocytosis were altered with CUR exposure; this was accompanied by Ctnnb1 and Syp upregulation and Mapk14, Map2k3, and Grip1 downregulation, suggesting that CUR-induced enhanced synaptic plasticity is associated with cell adhesion. Together, our results indicate that functionally different genes have altered methylation and expression in different neuronal populations of the hippocampal neurogenic niche, thus enhancing synaptic plasticity after CUR exposure.


Asunto(s)
Curcumina , Metilación de ADN , Hipocampo , Animales , Curcumina/farmacología , Ratas , Metilación de ADN/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Masculino , Embarazo , Ratas Sprague-Dawley , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
17.
Phytomedicine ; 128: 155531, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492366

RESUMEN

BACKGROUND: Cognitive dysfunction (CD) is a neurodegenerative disease characterized primarily by the decline of learning and memory abilities. The physiological and pathological mechanisms of CD are very complex, which is mainly related to normal function of the hippocampus. Lancao decoction (LC) is a Chinese medicine formula, which has been used to treat neurodegenerative disorders. However, the potential of LC for the treatment of CD, as well as its underlying mechanisms, is unclear. PURPOSE: In the study, we aimed to reveal the functional and neuronal mechanisms of LC's treatments for CD in scopolamine-induced mice. METHODS: Gas chromatography (GC) was used to determine the stability of LC's extraction. CD model was established by the chronic induction of scopolamine (Scop, 1 mg/kg/day) for 1 week. Behavioral tests including morris water maze (MWM) and y-maze were used to evaluate learning and memory abilities of mice after LC's treatments. Immunofluorescence was used to detected the expressions of cFOS, Brdu and Ki67 after LC's treatments. Pharmacological blockade experiments explored the role of α-Amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in LC's treatments for CD and its relationships with regeneration, activities and differentiation of neurons. RESULTS: The results showed that LC was capable of improving spatial learning and memory and spontaneous alternating abilities in Scop-induced mice, which was similar to donepezil. LC could increase the number of cFOS positive cells, which was used as a marker of neuronal activity to upregulate by neuronal activities in hippocampus, but donepezil did not. Moreover, LC could strengthen neurogenesis and neuro-differentiation by increasing the number of Brdu and Ki67 positive cells in hippocampal dentate gyrus (DG), meanwhile, donepezil could only enhance the number of Ki67 positive cells. Transient inhibition of AMPAR by NBQX blunted the function of LC's treatment for CD and inhibited the enhanced effect of LC on Scop-induced hippocampal neuronal excitability and neurogenesis in mice. CONCLUSION: To sum up, our study demonstrated that LC had the function of treating CD by enhancing content of acetylcholine (ACh) to activate AMPAR, which further up-regulated neurogenesis and neuronal differentiation to strengthen neuroactivities in hippocampus.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Hipocampo , Aprendizaje por Laberinto , Animales , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Escopolamina , Modelos Animales de Enfermedad , Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ratones Endogámicos ICR
18.
Chem Asian J ; 19(9): e202400061, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547362

RESUMEN

The internal electric field of the human body plays a crucial role in regulating various biological processes, such as, cellular interactions, embryonic development and the healing process. Electrical stimulation (ES) modulates cytoskeleton and calcium ion activities to restore nervous system functioning. When exposed to electrical fields, stem cells respond similarly to neurons, muscle cells, blood vessel linings, and connective tissue (fibroblasts), depending on their environment. This study develops cost-effective electroconductive scaffolds for regenerative therapy. This was achieved by incorporating carboxy functionalized graphene nanoplatelets (GNPs) into a Polycaprolactone (PCL)-collagen matrix. ES was used to assess the scaffolds' propensity to boost neuronal differentiation from MSCs. This study reported that aligned GNP-reinforced PCL-Collagen scaffolds demonstrate substantial MSC differentiation with ES. This work effectively develops scaffolds using a simple, cost-effective synthesis approach. The direct coupling approach generated a homogeneous electric field to stimulate cells cultured on GNP-reinforced scaffolds. The scaffolds exhibited improved mechanical and electrical characteristics, as a result of the reinforcement with carbon nanofillers. In vitro results suggest that electrical stimulation helps differentiation of mesenchymal stem-like cells (MSC-like) towards neuronal. This finding holds great potential for the development of effective treatments for tissue injuries related to the nervous system.


Asunto(s)
Diferenciación Celular , Colágeno , Conductividad Eléctrica , Estimulación Eléctrica , Grafito , Células Madre Mesenquimatosas , Poliésteres , Andamios del Tejido , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , Poliésteres/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Grafito/química , Humanos , Anisotropía , Animales , Células Cultivadas , Neurogénesis/efectos de los fármacos , Neuronas/citología
19.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442714

RESUMEN

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Asunto(s)
Corteza Cerebral , Glucocorticoides , Neurogénesis , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Humanos , Animales , Ratones , Glucocorticoides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Femenino , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Embarazo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Masculino
20.
Neuroreport ; 35(3): 200-207, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38305107

RESUMEN

Brain injury in preterm infants is a major cause of disability and mortality in children. GSK-3ß is a common pathogenic factor for cognitive dysfunction and involves in neuronal proliferation and differentiation. However, GSK-3ß affected neuronal differentiation and its molecular pathogenesis after hypoxic-ischemic brain damage in neonatal rats remains unclear. This study investigated the effects of GSK-3ß inhibitor (TWS119) on cell cycle regulatory proteins, a neuronal differentiation factor (CEND1), maturation neurons, T-box brain transcription factor 1 (TBR1)-positive neurons to clarify the mechanisms of hypoxic-ischemic brain damage in neonatal rats. We used hypoxic-ischemic Sprague-Dawley neonatal rats with brain damage as models. These rats were used for investigating the effect of GSK-3ß on cell cycle regulatory proteins, neuronal differentiation factor (CEND1), maturation neurons, TBR1-positive neurons by western blot and immunofluorescence. Cyclin D1 (a positive cell cycle regulator) expression decreased, and p21 (a negative cell cycle regulator) expression increased in the TWS119 group compared to the hypoxia-ischemia (HI) group 7 days after HI. Additionally, compared to the HI group, TWS119 treatment up-regulated CEND1 expression and promoted neuronal differentiation and cortex development based on NeuN and TBR1 expression. Our study suggests that the GSK-3ß inhibitor TWS119 promotes neuronal differentiation after hypoxic-ischemic brain damage in neonatal rats by inhibiting cell cycle pathway.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neurogénesis , Pirimidinas , Pirroles , Animales , Ratas , Animales Recién Nacidos , Proteínas de Ciclo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico , Ratas Sprague-Dawley , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA