Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.447
Filtrar
3.
Trends Immunol ; 45(5): 381-396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697871

RESUMEN

Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.


Asunto(s)
Células Receptoras Sensoriales , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/fisiología , Neuroinmunomodulación , Inmunidad , Interacciones Huésped-Patógeno/inmunología , Neoplasias/inmunología , Neoplasias/terapia
4.
Sci Rep ; 14(1): 10773, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730262

RESUMEN

The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Femenino , Hipocampo/metabolismo , Hipocampo/parasitología , Embarazo , Ratones , Infecciones por Nematodos/inmunología , Infecciones por Nematodos/parasitología , Potenciación a Largo Plazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Masculino , Neuroinmunomodulación
5.
Front Immunol ; 15: 1365871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756771

RESUMEN

More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo , Disbiosis , Microbioma Gastrointestinal , Trastornos Mentales , Salud Mental , Estrés Psicológico , Humanos , Microbioma Gastrointestinal/inmunología , Eje Cerebro-Intestino/inmunología , Estrés Psicológico/inmunología , Estrés Psicológico/microbiología , Disbiosis/inmunología , Trastornos Mentales/inmunología , Trastornos Mentales/microbiología , Encéfalo/inmunología , Animales , Neuroinmunomodulación
6.
Front Immunol ; 15: 1319863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756772

RESUMEN

Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.


Asunto(s)
Terapia por Acupuntura , Inmunomodulación , Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/inmunología , Animales , Neuroinmunomodulación , Citocinas/metabolismo
7.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599172

RESUMEN

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Asunto(s)
Inmunidad Innata , Células Receptoras Sensoriales , Inmunidad Innata/fisiología , Neuroinmunomodulación/fisiología , Homeostasis
8.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653601

RESUMEN

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Asunto(s)
Células Receptoras Sensoriales , Piel , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Piel/inmunología , Neuropéptidos/metabolismo , Neuropéptidos/inmunología , Células Dendríticas/inmunología , Neuroinmunomodulación , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/inmunología
9.
Nat Immunol ; 25(4): 598-606, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565970

RESUMEN

The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.


Asunto(s)
Trastornos del Neurodesarrollo , Neuroinmunomodulación , Embarazo , Animales , Femenino , Ratones , Trastornos del Neurodesarrollo/genética , Modelos Animales de Enfermedad
10.
Neuroimmunomodulation ; 31(1): 66-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38471475

RESUMEN

BACKGROUND: Evolutionary medicine builds on evolutionary biology and explains why natural selection has left us vulnerable to disease. Unfortunately, several misunderstandings exist in the medical literature about the levels and mechanisms of evolution. Reasons for these problems start from the lack of teaching evolutionary biology in medical schools. A common mistake is to assume that "traits must benefit the species, as otherwise the species would have gone extinct in the past" confusing evolutionary history (phylogeny) with evolutionary function (fitness). SUMMARY: Here we summarise some basic aspects of evolutionary medicine by pointing out: (1) Evolution has no aim. (2) For adaptive evolution to occur, a trait does not have to be beneficial to its carrier throughout its entire life. (3) Not every single individual carrying an adaptive trait needs to have higher than average fitness. (4) Traits do not evolve for the benefit of the species. Using examples from the field of neuroimmunomodulation like sickness behaviour (nervous system), testosterone (hormones), and cytokines (immunity), we show how misconceptions arise from not differentiating between the explanatory categories of phylogeny (evolutionary history) and evolutionary function (fitness). KEY MESSAGES: Evolution has no aim but is an automatism that does not function for the benefit of the species. In evolution, successful individuals are those that maximise the transmission of their genes, and health and survival are just strategies to have the opportunity to do so. Thus, a trait enabling survival of the individual until reproductive age will spread even if at later age the same trait leads to disease and death. Natural and sexual selection do not select for traits that benefit the health or happiness of the individual, but for traits that increase inclusive fitness even if this increases human suffering. In contrast, our humane aim is to increase individual well-being. Evolutionary medicine can help us achieve this aim against evolutionary constraints.


Asunto(s)
Evolución Biológica , Neuroinmunomodulación , Humanos , Neuroinmunomodulación/fisiología , Animales , Filogenia , Selección Genética
11.
Neuroimmunomodulation ; 31(1): 78-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527434

RESUMEN

BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.


Asunto(s)
Encéfalo , Enfermedad de Chagas , Timo , Humanos , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/fisiopatología , Animales , Encéfalo/inmunología , Timo/inmunología , Timo/fisiología , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/inmunología , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Neuroinmunomodulación/fisiología , Neuroinmunomodulación/inmunología , Sistema Hipófiso-Suprarrenal/inmunología , Sistema Hipófiso-Suprarrenal/fisiopatología , Sistema Hipófiso-Suprarrenal/metabolismo
12.
Arch Virol ; 169(4): 73, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472498

RESUMEN

Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Humanos , Neuroinmunomodulación , Regulación hacia Arriba , Interferón-alfa/metabolismo , Diferenciación Celular , Infecciones por Enterovirus/metabolismo , Linfocitos T CD4-Positivos , Células Dendríticas
13.
Cell Calcium ; 119: 102870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531262

RESUMEN

In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, ß- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.


Asunto(s)
Neuroinmunomodulación , Dolor , Canales Catiónicos TRPV , Humanos , Calcio/metabolismo , Capsaicina/farmacología , Dolor/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales
14.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38451947

RESUMEN

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Neuroinmunomodulación , Péptido Relacionado con Gen de Calcitonina/genética , Proteína 1 Modificadora de la Actividad de Receptores/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina , Inmunidad Adaptativa
15.
Biomed Pharmacother ; 173: 116371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430631

RESUMEN

Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Hashimoto , Esclerosis Múltiple , Humanos , Neuroinmunomodulación , Autoinmunidad , Células Asesinas Naturales
16.
Exp Gerontol ; 189: 112407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522309

RESUMEN

Vascular cognitive impairment (VCI) has become a common disease-causing cognitive deficit in humans, second only to Alzheimer's Disease (AD). Chuanzhitongluo capsule (CZTL) is a Traditional Chinese Medicine (TCM) preparation known for its effective protection against cerebral ischemia. However, its potential to ameliorate VCI remains unclear. This study aimed to investigate the cognitive improvement effects of CZTL in a mouse model of VCI. Chronic cerebral hypoperfusion (CCH) was induced in mice by bilateral common carotid artery stenosis (BCAS) to simulate the pathological changes associated with VCI. Spatial learning and memory abilities were assessed using the Morris Water Maze (MWM). RNA sequencing (RNA-Seq) was employed to identify differentially expressed genes (DEGs) in the hippocampus. Levels of inflammatory factors were measured through enzyme-linked immunosorbent assay (ELISA), while immunofluorescence (IF) determined the expression intensity of target proteins. Western Blot (WB) confirmed the final action pathway. Results indicated that CZTL significantly improved the spatial learning and memory abilities of CCH mice, along with alterations in gene expression profiles in the hippocampus. It also reduced neuroinflammation in the hippocampus and upregulated the choline acetyltransferase (ChAT) and α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR), which are in synaptic plasticity and neuronal development. Moreover, CZTL inhibited the NF-κB signaling pathway. In conclusion, CZTL may alleviate neuroinflammation induced by CCH and improve cognitive impairment in CCH mice by regulating the cholinergic anti-inflammatory pathway (CAIP) involving ChAT/α7nAChR/NF-κB.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Disfunción Cognitiva , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Neuroinmunomodulación , Receptor Nicotínico de Acetilcolina alfa 7 , Disfunción Cognitiva/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico
17.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389159

RESUMEN

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Asunto(s)
Factor de Necrosis Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Regulación hacia Arriba , Lipopolisacáridos/farmacología , Neuroinmunomodulación , Cumarinas/farmacología , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
19.
J Allergy Clin Immunol ; 153(4): 924-938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373475

RESUMEN

Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.


Asunto(s)
Citocinas , Células Receptoras Sensoriales , Humanos , Transducción de Señal , Inflamación , Neuroinmunomodulación/fisiología
20.
Respir Res ; 25(1): 83, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331782

RESUMEN

Recent evidence has increasingly underscored the importance of the neuro-immune axis in mediating allergic airway diseases, such as allergic asthma and allergic rhinitis. The intimate spatial relationship between neurons and immune cells suggests that their interactions play a pivotal role in regulating allergic airway inflammation. Upon direct activation by allergens, neurons and immune cells engage in interactions, during which neurotransmitters and neuropeptides released by neurons modulate immune cell activity. Meanwhile, immune cells release inflammatory mediators such as histamine and cytokines, stimulating neurons and amplifying neuropeptide production, thereby exacerbating allergic inflammation. The dynamic interplay between the nervous and immune systems suggests that targeting the neuro-immune axis in the airway could represent a novel approach to treating allergic airway diseases. This review summarized recent evidence on the nervous system's regulatory mechanisms in immune responses and identified potential therapeutic targets along the peripheral nerve-immune axis for allergic asthma and allergic rhinitis. The findings will provide novel perspectives on the management of allergic airway diseases in the future.


Asunto(s)
Asma , Neuropéptidos , Trastornos Respiratorios , Rinitis Alérgica , Humanos , Neuroinmunomodulación , Asma/tratamiento farmacológico , Sistema Respiratorio , Rinitis Alérgica/tratamiento farmacológico , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA