Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.682
Filtrar
1.
Nature ; 634(8032): 139-152, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358521

RESUMEN

The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.


Asunto(s)
Encéfalo , Conectoma , Curaduría de Datos , Drosophila melanogaster , Neuronas , Animales , Femenino , Masculino , Encéfalo/citología , Encéfalo/fisiología , Curaduría de Datos/métodos , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Neuronas/citología , Neuronas/fisiología , Neuronas/clasificación , Reproducibilidad de los Resultados , Atlas como Asunto , Heurística , Inhibición Neural
2.
Nature ; 634(8032): 124-138, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358518

RESUMEN

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.


Asunto(s)
Encéfalo , Conectoma , Drosophila melanogaster , Vías Nerviosas , Neuronas , Animales , Femenino , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/citología , Vías Eferentes/fisiología , Vías Eferentes/citología , Vías Nerviosas/fisiología , Vías Nerviosas/citología , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Neurotransmisores/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/citología , Sinapsis/metabolismo , Retroalimentación Sensorial/fisiología
3.
Nature ; 634(8032): 181-190, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358517

RESUMEN

Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.


Asunto(s)
Conectoma , Drosophila melanogaster , Navegación Espacial , Vías Visuales , Percepción Visual , Animales , Femenino , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica , Neuronas/clasificación , Neuronas/fisiología , Neuronas/ultraestructura , Neurópilo/citología , Neurópilo/fisiología , Neurópilo/ultraestructura , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Lóbulo Óptico de Animales no Mamíferos/ultraestructura , Navegación Espacial/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura , Vías Visuales/anatomía & histología , Vías Visuales/citología , Vías Visuales/fisiología , Vías Visuales/ultraestructura , Percepción Visual/fisiología , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/fisiología , Encéfalo/ultraestructura
4.
Nature ; 634(8032): 210-219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358519

RESUMEN

The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.


Asunto(s)
Encéfalo , Simulación por Computador , Conectoma , Drosophila melanogaster , Retroalimentación Sensorial , Conducta Alimentaria , Aseo Animal , Modelos Neurológicos , Animales , Femenino , Masculino , Encéfalo/fisiología , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Aseo Animal/fisiología , Neuronas Motoras/fisiología , Optogenética , Sinapsis/fisiología , Gusto/fisiología , Modelos Anatómicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neurotransmisores/metabolismo , Reproducibilidad de los Resultados , Neuronas/clasificación , Neuronas/fisiología , Conducta Apetitiva/fisiología , Antenas de Artrópodos , Retroalimentación Sensorial/fisiología
5.
Nature ; 632(8026): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048816

RESUMEN

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Colina/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Proteína Reelina , Transducción de Señal , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
6.
Nature ; 629(8014): 1100-1108, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778103

RESUMEN

The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.


Asunto(s)
Encéfalo , Drosophila melanogaster , Modelos Neurológicos , Neuronas , Lóbulo Óptico de Animales no Mamíferos , Conducta Social , Percepción Visual , Animales , Femenino , Masculino , Drosophila melanogaster/fisiología , Drosophila melanogaster/citología , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Percepción Visual/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Encéfalo/citología , Encéfalo/fisiología
7.
Nature ; 626(8000): 819-826, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326621

RESUMEN

To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.


Asunto(s)
Encéfalo , Drosophila melanogaster , Objetivos , Cabeza , Neuronas , Orientación Espacial , Navegación Espacial , Animales , Encéfalo/citología , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Locomoción/fisiología , Neuronas/clasificación , Neuronas/fisiología , Orientación Espacial/fisiología , Navegación Espacial/fisiología , Factores de Tiempo
8.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38300992

RESUMEN

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Asunto(s)
Axones , Mapeo Encefálico , Hipocampo , Neuronas , Animales , Ratones , Axones/fisiología , Axones/ultraestructura , Hipocampo/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Análisis de la Célula Individual/métodos , Red Nerviosa , Masculino , Ratones Endogámicos C57BL
9.
Pflugers Arch ; 476(5): 721-733, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376567

RESUMEN

Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and "other (i.e. Lamp5/Sncg)" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into "real" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.


Asunto(s)
Corteza Cerebral , Neuronas , Animales , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/clasificación , Humanos , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Corteza Cerebral/citología , Transcriptoma
10.
Nature ; 624(7991): 415-424, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092908

RESUMEN

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Asunto(s)
Evolución Biológica , Neuronas , Retina , Vertebrados , Visión Ocular , Animales , Humanos , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/clasificación , Análisis de Expresión Génica de una Sola Célula , Vertebrados/fisiología , Visión Ocular/fisiología , Especificidad de la Especie , Células Amacrinas/clasificación , Células Fotorreceptoras/clasificación , Células Ependimogliales/clasificación , Células Bipolares de la Retina/clasificación , Percepción Visual
11.
Nature ; 624(7991): 317-332, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092916

RESUMEN

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Conjuntos de Datos como Asunto , Hibridación Fluorescente in Situ , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , ARN/análisis , Análisis de Expresión Génica de una Sola Célula , Factores de Transcripción/metabolismo , Transcriptoma/genética
12.
Science ; 382(6667): eadf6812, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824655

RESUMEN

Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single cell transcriptomics and performed cellular characterization of the human cortex to better understand cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes also differed across areas. Primary visual cortex showed characteristic organization with major changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular characterization of human cortical cytoarchitecture and areal specialization.


Asunto(s)
Neocórtex , Humanos , Neocórtex/metabolismo , Neocórtex/ultraestructura , Neuronas/clasificación , Neuronas/metabolismo , Transcriptoma , Análisis de Expresión Génica de una Sola Célula , Filogenia
13.
Nature ; 620(7972): 145-153, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468639

RESUMEN

Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.


Asunto(s)
Evolución Molecular , Giro del Cíngulo , Animales , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Genoma Humano/genética , Genómica , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Macaca mulatta/genética , Neuronas/clasificación , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pan troglodytes/genética , Análisis de Expresión Génica de una Sola Célula , Células Madre/citología , Transposasas/metabolismo , Ensamble y Desensamble de Cromatina
14.
Cell Rep Methods ; 3(4): 100454, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159668

RESUMEN

Tissue clearing renders entire organs transparent to accelerate whole-tissue imaging; for example, with light-sheet fluorescence microscopy. Yet, challenges remain in analyzing the large resulting 3D datasets that consist of terabytes of images and information on millions of labeled cells. Previous work has established pipelines for automated analysis of tissue-cleared mouse brains, but the focus there was on single-color channels and/or detection of nuclear localized signals in relatively low-resolution images. Here, we present an automated workflow (COMBINe, Cell detectiOn in Mouse BraIN) to map sparsely labeled neurons and astrocytes in genetically distinct mouse forebrains using mosaic analysis with double markers (MADM). COMBINe blends modules from multiple pipelines with RetinaNet at its core. We quantitatively analyzed the regional and subregional effects of MADM-based deletion of the epidermal growth factor receptor (EGFR) on neuronal and astrocyte populations in the mouse forebrain.


Asunto(s)
Astrocitos , Neuronas , Animales , Ratones , Astrocitos/clasificación , Microscopía Fluorescente , Neuronas/clasificación , Prosencéfalo
15.
FEBS J ; 290(11): 2786-2804, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262281

RESUMEN

The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.


Asunto(s)
Cerebelo , Neuronas , Animales , Humanos , Cerebelo/anatomía & histología , Cerebelo/citología , Cerebelo/embriología , Biología Evolutiva , Neuronas GABAérgicas/citología , Homeostasis , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neurociencias , Análisis de la Célula Individual
16.
Braz. J. Pharm. Sci. (Online) ; 59: e20467, 2023. graf
Artículo en Inglés | LILACS | ID: biblio-1439510

RESUMEN

Abstract Prolonged overexposure to catecholamines causes toxicity, usually credited to continuous adrenoceptor stimulation, autoxidation, and the formation of reactive pro-oxidant species. Non-differentiated SH-SY5Y cells were used to study the possible contribution of oxidative stress in adrenaline (ADR)-induced neurotoxicity, as a model to predict the toxicity of this catecholamine to peripheral nerves. Cells were exposed to several concentrations of ADR (0.1, 0.25, 0.5 and 1mM) and two cytotoxicity assays [lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction] were performed at several time-points (24, 48, and 96h). The cytotoxicity of ADR was concentration- and time-dependent in both assays, since the lowest concentration tested (0.1mM) also caused significant cytotoxicity at 96h. N-acetyl-cysteine (1mM), a precursor of glutathione synthesis, prevented ADR-induced toxicity elicited by 0.5mM and 0.25mM ADR following a 96-h exposure, while the antioxidant Tiron (100µM) was non-protective. In conclusion, ADR led to mitochondrial distress and ultimately cell death in non-differentiated SH-SY5Y cells, possibly because of ADR oxidation products. The involvement of such processes in the catecholamine-induced peripheral neuropathy requires further analysis.


Asunto(s)
Epinefrina/agonistas , Enfermedades del Sistema Nervioso Periférico/clasificación , Toxicidad , Neuronas/clasificación , Nervios Periféricos/anomalías , Bromuros/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología
17.
Science ; 378(6619): eabm8797, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378956

RESUMEN

Genetically encoded fluorescent voltage indicators are ideally suited to reveal the millisecond-scale interactions among and between targeted cell populations. However, current indicators lack the requisite sensitivity for in vivo multipopulation imaging. We describe next-generation green and red voltage sensors, Ace-mNeon2 and VARNAM2, and their reverse response-polarity variants pAce and pAceR. Our indicators enable 0.4- to 1-kilohertz voltage recordings from >50 spiking neurons per field of view in awake mice and ~30-minute continuous imaging in flies. Using dual-polarity multiplexed imaging, we uncovered brain state-dependent antagonism between neocortical somatostatin-expressing (SST+) and vasoactive intestinal peptide-expressing (VIP+) interneurons and contributions to hippocampal field potentials from cell ensembles with distinct axonal projections. By combining three mutually compatible indicators, we performed simultaneous triple-population imaging. These approaches will empower investigations of the dynamic interplay between neuronal subclasses at single-spike resolution.


Asunto(s)
Potenciales de Acción , Hipocampo , Imagen Molecular , Neuronas , Corteza Visual , Animales , Ratones , Potenciales de Acción/fisiología , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/fisiología , Neuronas/clasificación , Neuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Imagen Molecular/métodos , Rodopsina/química , Rodopsina/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Corteza Visual/citología , Corteza Visual/fisiología , Fluorescencia , Mediciones Luminiscentes
18.
Proc Natl Acad Sci U S A ; 119(14): e2111786119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363567

RESUMEN

The advent of increasingly sophisticated imaging platforms has allowed for the visualization of the murine nervous system at single-cell resolution. However, current experimental approaches have not yet produced whole-brain maps of a comprehensive set of neuronal and nonneuronal types that approaches the cellular diversity of the mammalian cortex. Here, we aim to fill in this gap in knowledge with an open-source computational pipeline, Matrix Inversion and Subset Selection (MISS), that can infer quantitatively validated distributions of diverse collections of neural cell types at 200-µm resolution using a combination of single-cell RNA sequencing (RNAseq) and in situ hybridization datasets. We rigorously demonstrate the accuracy of MISS against literature expectations. Importantly, we show that gene subset selection, a procedure by which we filter out low-information genes prior to performing deconvolution, is a critical preprocessing step that distinguishes MISS from its predecessors and facilitates the production of cell-type maps with significantly higher accuracy. We also show that MISS is generalizable by generating high-quality cell-type maps from a second independently curated single-cell RNAseq dataset. Together, our results illustrate the viability of computational approaches for determining the spatial distributions of a wide variety of cell types from genetic data alone.


Asunto(s)
Mapeo Encefálico , Encéfalo , Neuronas , Animales , Encéfalo/citología , Mapeo Encefálico/métodos , Ratones , Neuronas/clasificación , Neuronas/metabolismo , RNA-Seq , Análisis de la Célula Individual
19.
Nature ; 602(7896): 268-273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110736

RESUMEN

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.


Asunto(s)
Trastorno del Espectro Autista , Predisposición Genética a la Enfermedad , Neuronas , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/patología , Organoides/citología , Proteómica , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética
20.
Elife ; 112022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113017

RESUMEN

The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue-reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca2+ imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs' responses became more reliable to the CS, while VIP-INs' responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs' responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Animales , Femenino , Masculino , Ratones , Neuronas/clasificación , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...