Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.692
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731862

RESUMEN

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Asunto(s)
Agonistas de Dopamina , Enfermedad de Parkinson , Tirosina 3-Monooxigenasa , Animales , Humanos , Dopamina/metabolismo , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Quimioterapia Combinada , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732120

RESUMEN

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Cuerpo Estriado , Modelos Animales de Enfermedad , Enfermedad de Parkinson , Receptor de Adenosina A2A , Animales , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Ratas , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Receptor de Adenosina A2A/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Triazoles/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley
3.
Addict Biol ; 29(5): e13403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735880

RESUMEN

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Asunto(s)
Analgésicos Opioides , Fentanilo , Ratones Endogámicos C57BL , Área Tegmental Ventral , Animales , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ratones , Fentanilo/farmacología , Masculino , Femenino , Analgésicos Opioides/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Autoadministración , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastornos Relacionados con Opioides/genética
4.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705492

RESUMEN

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Especies Reactivas de Oxígeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Tricloroetileno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Rotenona/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Paraquat/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Estrés Oxidativo/efectos de los fármacos , Humanos , Contaminantes Ambientales/toxicidad , Ratas Sprague-Dawley
5.
Environ Int ; 186: 108642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608384

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by genetic factors and environmental exposures. Polychlorinated biphenyls (PCBs), a group of synthetic organic compounds, have been identified as potential environmental risk factors for neurodegenerative diseases, including PD. We explored PCB-induced neurotoxicity mechanisms using iPSC-derived dopaminergic neurons and assessed their transcriptomic responses to varying PCB concentrations (0.01 µM, 0.5 µM, and 10 µM). Specifically, we focused on PCB-180, a congener known for its accumulation in human brains. The exposure durations were 24 h and 74 h, allowing us to capture both short-term and more prolonged effects on gene expression patterns. We observed that PCB exposure led to the suppression of oxidative phosphorylation, synaptic function, and neurotransmitter release, implicating these pathways in PCB-induced neurotoxicity. In our comparative analysis, we noted similarities in PCB-induced changes with other PD-related compounds like MPP+ and rotenone. Our findings also aligned with gene expression changes in human blood derived from a population exposed to PCBs, highlighting broader inflammatory responses. Additionally, molecular patterns seen in iPSC-derived neurons were confirmed in postmortem PD brain tissues, validating our in vitro results. In conclusion, our study offers novel insights into the multifaceted impacts of PCB-induced perturbations on various cellular contexts relevant to PD. The use of iPSC-derived dopaminergic neurons allowed us to decipher intricate transcriptomic alterations, bridging the gap between in vitro and in vivo findings. This work underscores the potential role of PCB exposure in neurodegenerative diseases like PD, emphasizing the need to consider both systemic and cell specific effects.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Bifenilos Policlorados , Transcriptoma , Bifenilos Policlorados/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Transcriptoma/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Contaminantes Ambientales/toxicidad
6.
Environ Int ; 186: 108597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579453

RESUMEN

The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 µg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 µg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.


Asunto(s)
Caenorhabditis elegans , Neuronas Dopaminérgicas , Emisiones de Vehículos , Animales , Caenorhabditis elegans/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Material Particulado/toxicidad , Animales Modificados Genéticamente , Ácido Glutámico/metabolismo , Locomoción/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Contaminantes Atmosféricos/toxicidad
7.
Cell Death Dis ; 15(4): 287, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654003

RESUMEN

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.


Asunto(s)
Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas , Oxidopamina , Enfermedad de Parkinson , Animales , Oxidopamina/farmacología , Ratones , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Glucosamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , beta-N-Acetilhexosaminidasas/metabolismo , Modelos Animales de Enfermedad
8.
Ecotoxicol Environ Saf ; 276: 116280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574648

RESUMEN

In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.


Asunto(s)
Dieta Alta en Grasa , Neuronas Dopaminérgicas , Hidrocarburos Bromados , Ratones Endogámicos C57BL , Mitocondrias , Sustancia Negra , Animales , Hidrocarburos Bromados/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Ratones , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Solventes/toxicidad
9.
Nat Commun ; 15(1): 3658, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688913

RESUMEN

Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.


Asunto(s)
Caenorhabditis elegans , Neuronas Dopaminérgicas , Enfermedad de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Caenorhabditis elegans/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Animales , Humanos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Fenotipo , Agregado de Proteínas/efectos de los fármacos , Modelos Animales de Enfermedad , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Piridinas/farmacología , Piridinas/química , Amidas/farmacología , Amidas/química
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678615

RESUMEN

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Grasos Omega-3 , Ratones Endogámicos C57BL , Enfermedad de Parkinson , Linfocitos T Reguladores , Animales , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Intestinos/efectos de los fármacos , Intestinos/patología , Conducta Animal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
11.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 100-106, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678620

RESUMEN

Nervonic acid (NA) is a primary long-chain fatty acid and has been confirmed to have neuroprotective effects in neurologic diseases. Oxidative stress and neuronal damage are the main causes of Parkinson's disease (PD). This study mainly explored whether NA is involved in regulating oxidative stress and apoptosis in MPTP-induced mouse model and MPP-induced cell model. Through behavior tests, we proved that MPTP-induced motor dysfunction in mice was recovered by NA treatment. NA can reduce MPTP-induced neuronal damage, manifested by elevated levels of TH and dopamine, as well as decreased levels of α-syn. In the in vitro model, we observed from CCK8 assay and flow cytometry that the induction of MPP markedly suppressed cell activity and enhanced cell apoptosis, but these functions were all reversed by NA. Furthermore, NA administration reversed the increase in ROS production and MDA levels induced by MPTP or MPP, as well as the decrease in SOD levels, suggesting the antioxidant properties of NA in PD. Meanwhile, we confirmed that NA can regulate oxidative stress and neuronal damage by activating the MEK/ERK pathway. Overall, we concluded that NA could alleviate MPTP-induced PD via MEK/ERK pathway.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Apoptosis , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
12.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675592

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Asunto(s)
Supervivencia Celular , Dopamina , Extracto de Semillas de Uva , Nanopartículas , Enfermedad de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extracto de Semillas de Uva/química , Extracto de Semillas de Uva/farmacología , Rotenona/farmacología , Línea Celular Tumoral , alfa-Sinucleína/metabolismo , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Tamaño de la Partícula , Liposomas/química , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
13.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599494

RESUMEN

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Asunto(s)
Potenciales de Acción , Neuronas Dopaminérgicas , Exenatida , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Sustancia Negra , Animales , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Exenatida/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratones , Ponzoñas/farmacología , Péptidos/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Fragmentos de Péptidos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
14.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38648865

RESUMEN

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Homeostasis , Hierro , Mitocondrias , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Homeostasis/fisiología , Homeostasis/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular Tumoral , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673772

RESUMEN

The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.


Asunto(s)
Daño del ADN , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo
16.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574977

RESUMEN

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Asunto(s)
Neuronas Dopaminérgicas , Ferroptosis , Mitofagia , Enfermedad de Parkinson , ATPasa Intercambiadora de Sodio-Potasio , Animales , Mitofagia/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Masculino , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Haploinsuficiencia , Ratones Noqueados
17.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554797

RESUMEN

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Asunto(s)
Neuronas Dopaminérgicas , Receptores ErbB , Lapatinib , Trastornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animales , Masculino , Ratas , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Lapatinib/farmacología , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
18.
J Cell Physiol ; 239(5): e31250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477420

RESUMEN

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Asunto(s)
Ferroptosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Transducción de Señal , Ferroptosis/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Humanos , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Línea Celular , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Modelos Animales de Enfermedad , FN-kappa B/metabolismo
19.
Eur J Neurosci ; 59(10): 2483-2501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532289

RESUMEN

Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones Endogámicos C57BL , Humanos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Masculino
20.
Folia Neuropathol ; 62(1): 83-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174686

RESUMEN

Oxidative stress is a pivotal stimulating factor in neurocyte apoptosis and has been involved in the pathogenesis of Parkinson's disease (PD). In this study, we have demonstrated that the improvement in the motor disorder of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/Pro-induced mice caused by b-Ecdysterone (b-Ecd) treatment is due to its antioxidant properties. Using open field, rotarod, and pole climbing tests, we have found that b-Ecd alleviates motor disorder in MPTP/Pro-induced mice and ultimately reduces the impairment of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra (SN). Notably, these effects of b-Ecd were not observed in Nrf2-KO mice. In addition, b-Ecd significantly reduced the formation of ROS and the level of MDA, blocked the increase of LPO, and partially reversed the GSH/GSSG ratio in MPTP/Pro-induced WT mice; however, these results were also not observed in MPTP/Pro-induced Nrf2-KO mice. Mechanistically, b-Ecd enhanced the expression levels of heme oxygenase 1 (HO-1) and GCLc, but not NQO1 (NAD(P)H quinone dehydrogenase 1) and GCLm expression. Interestingly, b-Ecd failed to increase the protein and mRNA levels of HO-1 and GCLc in Nrf2-KO mice, suggesting that b-Ecd attenuates oxidative stress through an Nrf2-dependent mechanism. Furthermore, b-Ecd promoted the expressions of PI3K/Akt phosphorylation (activity) and GSK-3b phosphorylation (inactivity). Conversely, administration of b-Ecd markedly decreased Fyn phosphorylation levels. Collectively, our findings suggest that b-Ecd focuses on Nrf2 in reducing MPTP/Pro-induced oxidative stress and subsequent motor deficits by inhibiting its nuclear export through PI3K/Akt/GSK-3b/Fyn pathway regulation. These further indicate that b-Ecd may be an absorbing therapeutic agent for PD.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratones Noqueados , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA