Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771878

RESUMEN

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Asunto(s)
Enfermedad de Huntington , Organoides , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , Organoides/patología , Organoides/metabolismo , Sustancia Negra/patología , Sustancia Negra/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Neuronas/patología , Diferenciación Celular , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Células Madre Pluripotentes/metabolismo , Optogenética
2.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Interneuronas/patología , Interneuronas/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Masculino , Femenino , Eminencia Media/patología , Eminencia Media/metabolismo , Somatostatina/metabolismo , Niño , Preescolar , Receptores de GABA-A/metabolismo , Adolescente , Eminencia Ganglionar
3.
Neuroscience ; 546: 63-74, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38537894

RESUMEN

GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.


Asunto(s)
Proteínas de Homeodominio , Ratones Noqueados , Proteínas del Tejido Nervioso , Lectinas de Plantas , Conducta Social , Vibrisas , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Masculino , Ratones Endogámicos C57BL , Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Modelos Animales de Enfermedad , Ratones , Corteza Somatosensorial/metabolismo , Discriminación en Psicología/fisiología , Receptores N-Acetilglucosamina/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Encéfalo/metabolismo , Encéfalo/patología
4.
Stem Cell Res Ther ; 14(1): 170, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365654

RESUMEN

BACKGROUND: Brainstem stroke causes severe and persistent neurological impairment. Due to the limited spontaneous recovery and regeneration of the disrupted neural circuits, transplantation of exogenous neural stem cells (NSCs) was an alternative, while there were limitations for primitive NSCs. METHODS: We established a mouse model of brainstem stroke by injecting endothelin in the right pons. Brain-derived neurotrophic factor (BDNF)- and distal-less homeobox 2 (Dlx2)-modified NSCs were transplanted to treat brainstem stroke. Transsynaptic viral tracking, immunostaining, magnetic resonance imaging, behavioral testing, and whole-cell patch clamp recordings were applied to probe the pathophysiology and therapeutic prospects of BDNF- and Dlx2-modified NSCs. RESULTS: GABAergic neurons were predominantly lost after the brainstem stroke. No endogenous NSCs were generated in situ or migrated from the neurogenesis niches within the brainstem infarct region. Co-overexpressions of BDNF and Dlx2 not only promoted the survival of NSCs, but also boosted the differentiation of NSCs into GABAergic neurons. Results from transsynaptic virus tracking, immunostaining, and evidence from whole-cell patch clamping revealed the morphological and functional integration of the grafted BDNF- and Dlx2-modified NSCs-derived neurons with the host neural circuits. Neurological function was improved by transplantation of BDNF- and Dlx2-modified NSCs in brainstem stroke. CONCLUSIONS: These findings demonstrated that BDNF- and Dlx2-modified NSCs differentiated into GABAergic neurons, integrated into and reconstituted the host neural networks, and alleviated the ischemic injury. It thus provided a potential therapeutic strategy for brainstem stroke.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Modelos Animales de Enfermedad , Neuronas GABAérgicas/patología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/patología
5.
Am J Psychiatry ; 180(7): 495-507, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073488

RESUMEN

OBJECTIVE: In schizophrenia, somatostatin (SST) and parvalbumin (PV) mRNA levels are lower in the dorsolateral prefrontal cortex (DLPFC), but it remains unclear whether these findings reflect lower transcript levels per neuron, fewer neurons, or both. Distinguishing among these alternatives has implications for understanding the pathogenesis of, and developing new treatments for, DLPFC dysfunction in schizophrenia. METHODS: To identify SST and PV neurons in postmortem human DLPFC, the authors used fluorescent in situ hybridization to label cells expressing two transcripts not altered in schizophrenia: vesicular GABA transporter (VGAT; a marker of all GABA neurons) and SOX6 (a marker of only SST and PV neurons). In cortical layers 2 and 4, where SST and PV neurons, respectively, are differentially enriched, levels of SST and PV mRNA per neuron and the relative densities of SST-, PV-, and VGAT/SOX6-positive neurons were quantified. RESULTS: In individuals with schizophrenia, mRNA levels per positive neuron were markedly and significantly lower for SST in both layers (effect sizes >1.48) and for PV only in layer 4 (effect size=1.14) relative to matched unaffected individuals. In contrast, the relative densities of all SST-, PV-, or VGAT/SOX6-positive neurons were unaltered in schizophrenia. CONCLUSIONS: Novel multiplex fluorescent in situ hybridization techniques permit definitive distinction between cellular levels of transcripts and the presence of neurons expressing those transcripts. In schizophrenia, pronounced SST and PV mRNA deficits are attributable to lower levels of each transcript per neuron, not fewer neurons, arguing against death or abnormal migration of these neurons. Instead, these neurons appear to be functionally altered and thus amenable to therapeutic interventions.


Asunto(s)
Esquizofrenia , Humanos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Expresión Génica/genética , Hibridación Fluorescente in Situ , Parvalbúminas/genética , Parvalbúminas/metabolismo , Corteza Prefrontal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
6.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672158

RESUMEN

Multiple system atrophy of the parkinsonian type (MSA-P) is a rare, fatal neurodegenerative disease with sporadic onset. It is still unknown if MSA-P is a primary oligodendropathy or caused by neuronal pathophysiology leading to severe, α-synuclein-associated neurodegeneration, mainly in the striatum. In this study, we generated and differentiated induced pluripotent stem cells (iPSCs) from patients with the clinical diagnosis of probable MSA-P (n = 3) and from three matched healthy controls into GABAergic striatal medium spiny neurons (MSNs). We found a significantly elevated release and neuronal distribution for α-synuclein, as well as hypoexcitability in the MSNs derived from the MSA-P patients compared to the healthy controls. These data suggest that the striatal hypoexcitable neurons of MSA-P patients contribute to a pathological α-synuclein burden which is likely to spread to neighboring cells and projection targets, facilitating disease progression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/patología , alfa-Sinucleína , Células Madre Pluripotentes Inducidas/patología , Neuronas Espinosas Medianas , Neuronas GABAérgicas/patología
7.
Nature ; 602(7896): 268-273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110736

RESUMEN

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.


Asunto(s)
Trastorno del Espectro Autista , Predisposición Genética a la Enfermedad , Neuronas , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/patología , Organoides/citología , Proteómica , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética
8.
Toxicology ; 465: 153012, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34718030

RESUMEN

Rare earth elements (REEs) are widely used in the industry, agriculture, biomedicine, aerospace, etc, and have been shown to pose toxic effects on animals, as such, studies focusing on their biomedical properties are gaining wide attention. However, environmental and population health risks of REEs are still not very clear. Also, the REEs damage to the nervous system and related molecular mechanisms needs further research. In this study, the L1 and L4 stages of the model organism Caenorhabditis elegans were used to evaluate the effects and possible neurotoxic mechanism of lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O). For the L1 and L4 stage worms, the 48-h median lethal concentrations (LC50s) of La(NO3)3·6H2O were 93.163 and 648.0 mg/L respectively. Our results show that La(NO3)3·6H2O induces growth inhibition and defects in behavior such as body length, body width, body bending frequency, head thrashing frequency and pharyngeal pumping frequency at the L1 and L4 stages in C. elegans. The L1 stage is more sensitive to the toxicity of lanthanum than the L4 stage worms. Using transgenic strains (BZ555, EG1285 and NL5901), we found that La(NO3)3·6H2O caused the loss or break of soma and dendrite neurons in L1 and L4 stages; and α-synuclein aggregation in L1 stage, indicating that Lanthanum can cause toxic damage to dopaminergic and GABAergic neurons. Mechanistically, La(NO3)3·6H2O exposure inhibited or activated the neurotransmitter transporters and receptors (glutamate, serotonin and dopamine) in C. elegans, which regulate behavior and movement functions. Furthermore, significant increase in the production of reactive oxygen species (ROS) was found in the L4 stage C. elegans exposed to La(NO3)3·6H2O. Altogether, our data show that exposure to lanthanum can cause neuronal toxic damage and behavioral defects in C. elegans, and provide basic information for understanding the neurotoxic effect mechanism and environmental health risks of rare earth elements.


Asunto(s)
Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Lantano/toxicidad , Síndromes de Neurotoxicidad/etiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Dosificación Letal Mediana , Movimiento/efectos de los fármacos , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
J Neural Transm (Vienna) ; 129(5-6): 643-647, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34935080

RESUMEN

Research in Peter Riederer's lab in Vienna in the late 1970's came from a strong tradition in post-mortem neurochemical studies, at that time a relatively niche approach in neuroscience research. He was also early to recognise the value of post-mortem brain tissue in elucidating pharmacological mechanisms of neuropsychiatric treatments. I was fortunate to have Peter Riederer as a mentor in my early post-doctoral career; his generous support and the opportunities to use post-mortem brain tissue provided an invaluable grounding on which much of my future research was based. In this paper, I shall provide a brief overview of one trajectory of my research into the neurobiology of schizophrenia that started in the Riederer lab in Vienna investigating dopamine and the D2 receptor. Subsequent research to understand findings of increased dopamine resulted in the identification of reduced GABAergic innervation, culminating in the finding of a deficit in the parvalbumin-containing subtype of GABAergic neurons. Most recent work has been studying how changes in DNA methylation of the parvalbumin gene may relate to these findings in psychotic illness and its animal models.


Asunto(s)
Parvalbúminas , Esquizofrenia , Animales , Dopamina , Neuronas GABAérgicas/patología , Masculino , Receptores de Dopamina D2/genética , Esquizofrenia/patología
10.
Cell Rep ; 37(13): 110177, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965426

RESUMEN

The hippocampus is a temporal lobe structure critical for cognition, such as learning, memory, and attention, as well as emotional responses. Hippocampal dysfunction can lead to persistent anxiety and/or depression. However, how millions of neurons in the hippocampus are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing the coagulation factor c homolog (COCH) gene. COCH-expressing neurons or COCH neurons are topographically segregated in the distal region of the ventral CA3 hippocampus and express Mtf1 and Cacna1h. MTF1 activation of Cacna1h transcription in COCH neurons encodes the ability of COCH neurons to burst action potentials and cause social-stress-induced anxiety-like behaviors by synapsing directly with a subset of GABAergic inhibitory neurons in the lateral septum. Together, this study provides a molecular and circuitry-based framework for understanding how COCH neurons in the hippocampus are assembled to engage social behavior.


Asunto(s)
Potenciales de Acción , Ansiedad/patología , Región CA3 Hipocampal/patología , Proteínas de la Matriz Extracelular/metabolismo , Neuronas GABAérgicas/patología , Conducta Social , Estrés Psicológico , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Región CA3 Hipocampal/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Emociones , Proteínas de la Matriz Extracelular/genética , Miedo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Transcripción MTF-1
11.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831225

RESUMEN

Understanding seizure development requires an integrated knowledge of different scales of organization of epileptic networks. We developed a model of "epilepsy-in-a-dish" based on dissociated primary neuronal cells from neonatal rat hippocampus. We demonstrate how a single application of glutamate stimulated neurons to generate spontaneous synchronous spiking activity with further progression into spontaneous seizure-like events after a distinct latency period. By computational analysis, we compared the observed neuronal activity in vitro with intracranial electroencephalography (EEG) data recorded from epilepsy patients and identified strong similarities, including a related sequence of events with defined onset, progression, and termination. Next, a link between the neurophysiological changes with network composition and cellular structure down to molecular changes was established. Temporal development of epileptiform network activity correlated with increased neurite outgrowth and altered branching, increased ratio of glutamatergic over GABAergic synapses, and loss of calbindin-positive interneurons, as well as genome-wide alterations in DNA methylation. Differentially methylated genes were engaged in various cellular activities related to cellular structure, intracellular signaling, and regulation of gene expression. Our data provide evidence that a single short-term excess of glutamate is sufficient to induce a cascade of events covering different scales from molecule- to network-level, all of which jointly contribute to seizure development.


Asunto(s)
Encéfalo/patología , Epilepsia/patología , Modelos Biológicos , Neuronas/patología , Animales , Calbindinas/metabolismo , Calcio/metabolismo , Células Cultivadas , Metilación de ADN/genética , Epigénesis Genética , Epilepsia/genética , Neuronas GABAérgicas/patología , Redes Reguladoras de Genes , Neuronas/metabolismo , Análisis de Componente Principal , Ratas , Factores de Tiempo
12.
J Clin Invest ; 131(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491914

RESUMEN

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause familial hemiplegic migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.


Asunto(s)
Depresión de Propagación Cortical , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Trastornos Migrañosos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Neocórtex/metabolismo , Animales , Neuronas GABAérgicas/patología , Interneuronas/patología , Ratones , Ratones Transgénicos , Trastornos Migrañosos/genética , Trastornos Migrañosos/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neocórtex/patología
13.
Neurochem Int ; 150: 105179, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34500023

RESUMEN

Schizophrenia is a major psychiatric disorder, but the molecular mechanisms leading to its initiation or progression remain unclear. To elucidate the pathophysiology of schizophrenia, we used an in vitro neuronal cell culture model involving human induced pluripotent stem cells (hiPSCs) derived from a monozygotic-twin discordant schizophrenia pair. The cultured neurons differentiated from hiPSCs were composed of a mixture of glutamatergic excitatory neurons and gamma aminobutyric acid (GABA)ergic inhibitory neurons. In the electrophysiological analysis, a different pattern of spontaneous neuronal activity was observed under the condition without any stimulants. The frequency of spontaneous excitatory post-synaptic currents (sEPSCs) was significantly higher in the hiPSC-derived neurons of the patient with schizophrenia than in the control sibling at day-in-vitro 30. However, the synaptic formation was not different between the patient with schizophrenia and the control sibling during the same culture period. To explain underlying mechanisms of higher excitability of presynaptic cells, we focused on the potassium-chloride co-transporter KCC2, which contributes to excitatory-to-inhibitory GABA polarity switch in developing neurons. We also revealed the altered expression pattern of KCC2 in hiPSC-derived neurons from the patient with schizophrenia, which could contribute to understanding the pathology of schizophrenia in the developing nervous system.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Simportadores/biosíntesis , Gemelos Monocigóticos , Diferenciación Celular/fisiología , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Fibroblastos/metabolismo , Fibroblastos/patología , Neuronas GABAérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Inhibición Neural/fisiología , Neuronas/patología , Esquizofrenia/genética , Esquizofrenia/patología , Simportadores/genética , Gemelos Monocigóticos/genética , Adulto Joven
14.
Neurobiol Dis ; 157: 105442, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246770

RESUMEN

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/genética , Interneuronas/metabolismo , Inhibición Neural/genética , Neurregulina-1/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Calbindina 2/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/patología , Expresión Génica , Haploinsuficiencia , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Interneuronas/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratones , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Receptor ErbB-4/genética , Ácido gamma-Aminobutírico/metabolismo
15.
Eur J Med Genet ; 64(9): 104282, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34284163

RESUMEN

The Forkhead transcription factor FOXG1 is a prerequisite for telencephalon development in mammals and is an essential factor controlling expansion of the dorsal telencephalon by promoting neuron and interneuron production. Heterozygous FOXG1 gene mutations cause FOXG1 syndrome characterized by severe intellectual disability, motor delay, dyskinetic movements and epilepsy. Neuroimaging studies in patients disclose constant features including microcephaly, corpus callosum dysgenesis and delayed myelination. Currently, investigative research on the underlying pathophysiology relies on mouse models only and indicates that de-repression of FOXG1 target genes may cause premature neuronal differentiation at the expense of the progenitor pool, patterning and migration defects with impaired formation of cortico-cortical projections. It remains an open question to which extent this recapitulates the neurodevelopmental pathophysiology in FOXG1-haploinsufficient patients. To close this gap, we performed neuropathological analyses in two foetal cases with FOXG1 premature stop codon mutations interrupted during the third trimester of the pregnancy for microcephaly and corpus callosum dysgenesis. In these foetuses, we observed cortical lamination defects and decreased neuronal density mainly affecting layers II, III and V that normally give rise to cortico-cortical and inter-hemispheric axonal projections. GABAergic interneurons were also reduced in number in the cortical plate and persisting germinative zones. Additionally, we observed more numerous PDGFRα-positive oligodendrocyte precursor cells and fewer Olig2-positive pre-oligodendrocytes compared to age-matched control brains, arguing for delayed production and differentiation of oligodendrocyte lineage leading to delayed myelination. These findings provide key insights into the human pathophysiology of FOXG1 syndrome.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Axones/patología , Factores de Transcripción Forkhead/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neurogénesis , Oligodendroglía/patología , Feto Abortado/metabolismo , Feto Abortado/patología , Adulto , Agenesia del Cuerpo Calloso/patología , Axones/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Encéfalo/patología , Codón sin Sentido , Femenino , Factores de Transcripción Forkhead/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Microcefalia/patología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/patología , Oligodendroglía/metabolismo , Linaje , Embarazo , Síndrome
16.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299211

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Glaucoma/patología , Células Ganglionares de la Retina/patología , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Neuronas GABAérgicas/patología , Regulación de la Expresión Génica , Glaucoma/etiología , Glaucoma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Presión Intraocular , Masculino , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/metabolismo
17.
Nat Commun ; 12(1): 3653, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135323

RESUMEN

The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


Asunto(s)
Interneuronas/patología , Parvalbúminas/metabolismo , Conducta Social , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Animales , Autofagia , Axones/efectos de los fármacos , Axones/patología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/patología , Factores de Tiempo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
18.
Mol Brain ; 14(1): 96, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174930

RESUMEN

Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 - 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < - 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.


Asunto(s)
Biomarcadores/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas GABAérgicas/patología , Mesencéfalo/patología , Esquizofrenia/patología , Adulto , Anciano , Estudios de Cohortes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Regulación de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/patología , Parvalbúminas/metabolismo , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Esquizofrenia/genética , Somatostatina/genética , Somatostatina/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico
19.
Neurobiol Aging ; 105: 1-15, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34004491

RESUMEN

The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity. We sought to determine whether PN expression increased on GABAergic and non-GABAergic IC cells that project to the medial geniculate body (MG). We used retrograde tract-tracing in combination with immunohistochemistry for glutamic acid decarboxylase and Wisteria floribunda agglutinin across three age groups of Fischer Brown Norway rats. Results demonstrate that PNs increase with age on lemniscal and non-lemniscal IC-MG cells, however two key differences exist. First, PNs increased on non-lemniscal IC-MG cells during middle-age, but not until old age on lemniscal IC-MG cells. Second, increases of PNs on lemniscal IC-MG cells occurred on non-GABAergic cells rather than on GABAergic cells. These results suggest that synaptic stabilization and reduced plasticity likely occur at different ages on a subset of the IC-MG pathway.


Asunto(s)
Envejecimiento/patología , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/fisiología , Colículos Inferiores/citología , Colículos Inferiores/patología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Tálamo/citología , Tálamo/patología , Animales , Vías Auditivas/fisiología , Cuerpos Geniculados/citología , Cuerpos Geniculados/patología , Glutamato Descarboxilasa/metabolismo , Pérdida Auditiva/etiología , Pérdida Auditiva/patología , Masculino , Lectinas de Plantas , Ratas , Receptores N-Acetilglucosamina
20.
Cell Rep ; 34(12): 108889, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761348

RESUMEN

Spinal cord injury (SCI) often results in spasticity. There is currently no effective therapy for spasticity. Here, we describe a method to efficiently differentiate human pluripotent stem cells from spinal GABA neurons. After transplantation into the injured rat spinal cord, the DREADD (designer receptors exclusively activated by designer drug)-expressing spinal progenitors differentiate into GABA neurons, mitigating spasticity-like response of the rat hindlimbs and locomotion deficits in 3 months. Administering clozapine-N-oxide, which activates the grafted GABA neurons, further alleviates spasticity-like response, suggesting an integration of grafted GABA neurons into the local neural circuit. These results highlight the therapeutic potential of the spinal GABA neurons for SCI.


Asunto(s)
Neuronas GABAérgicas/patología , Espasticidad Muscular/patología , Espasticidad Muscular/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/patología , Potenciales de Acción/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Humanos , Locomoción , Vértebras Lumbares/patología , Vértebras Lumbares/fisiopatología , Masculino , Neuronas Motoras/patología , Neuronas Motoras/ultraestructura , Espasticidad Muscular/complicaciones , Inhibición Neural , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Sinapsis/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA