Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Aging Dis ; 15(5): 2191-2204, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39191396

RESUMEN

Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Neuroserpina , Serpinas , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Humanos , Serpinas/metabolismo , Serpinas/uso terapéutico , Neuropéptidos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/uso terapéutico
2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201490

RESUMEN

Atherosclerosis is a chronic inflammatory disease that involves modified low-density lipoproteins (LDL) which play a pivotal role in the initiation and progression of the disease. Myeloperoxidase oxidized LDL (Mox-LDL) is considered to be the most patho-physiologically relevant type of modified LDL and has been reported to be ubiquitously present in atheroma plaques of patients with atherosclerosis. Besides its involvement in the latter disease state, Mox-LDL has also been shown to be implicated in the pathogenesis of various illnesses including sleep disorders, which are in turn associated with heart disease and depression in many intricate ways. Meanwhile, we have recently shown that lox-1-mediated Mox-LDL signaling modulates neuroserpin activity in endothelial cells, which could have major implications that go beyond the pathophysiology of stroke and cerebrovascular disease (CD). Of note is that tissue plasminogen activator (tPA), which is the main target of neuroserpin in the brain, has a crucial function in the processing of brain-derived neurotrophic factor (BDNF) into its mature form. This factor is known to be involved in major depressive disorder (MDD) development and pathogenesis. Since tPA is more conventionally recognized as being involved in fibrinolytic mechanisms, and its effect on the BDNF system in the context of MDD is still not extensively studied, we speculate that any Mox-LDL-driven change in the activity of tPA in patients with atherosclerosis may lead to a decrease in the production of mature BDNF, resulting in impaired neural plasticity and depression. Deciphering the mechanisms of interaction between those factors could help in better understanding the potentially overlapping pathological mechanisms that regulate disease processes in CD and MDD, supporting the possibility of novel and common therapeutic opportunities for millions of patients worldwide.


Asunto(s)
Aterosclerosis , Lipoproteínas LDL , Peroxidasa , Humanos , Aterosclerosis/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidasa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/metabolismo , Neuroserpina , Receptores Depuradores de Clase E/metabolismo , Trastorno Depresivo Mayor/metabolismo
3.
J Neurol Sci ; 462: 123059, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850771

RESUMEN

BACKGROUND: VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS: We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS: We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION: CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Enfermedad por Cuerpos de Lewy , Neuropéptidos , Neuroserpina , Serpinas , Humanos , Femenino , Masculino , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Neuropéptidos/líquido cefalorraquídeo , Serpinas/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Anciano de 80 o más Años , Persona de Mediana Edad , Factores de Crecimiento Nervioso/líquido cefalorraquídeo
4.
BMC Neurol ; 24(1): 9, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166833

RESUMEN

BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare genetic disorder characterized by progressive cognitive decline and myoclonic epilepsy, caused by pathogenic variants of SERPINI1. We reported a case of genetically confirmed FENIB with de novo H338R mutation in the SERPINI1, in which frontal deficits including inattention and disinhibition, and relevant atrophy in the vmPFC on brain MRI were observed in the early stage of the disease. CASE PRESENTATION: A 23-year-old Japanese man presented with progressive inattention and disinhibition over 4 years followed by myoclonic epilepsy. The whole-genome sequencing and filtering analysis showed de novo heterozygous H338R mutation in the SERPINI1, confirming the diagnosis of FENIB. Single-case voxel-based morphometry using brain magnetic resonance imaging obtained at the initial visit revealed focal gray matter volume loss in the ventromedial prefrontal cortices, which is presumed to be associated with inattention and disinhibition. CONCLUSION: Frontal deficits including inattention and disinhibition can be the presenting symptoms of patients with FENIB. Single-case voxel-based morphometry may be useful for detecting regional atrophy of the frontal lobe in FENIB. Detecting these abnormalities in the early stage of disease may be key findings for differentiating FENIB from other causes of progressive myoclonic epilepsy.


Asunto(s)
Epilepsias Mioclónicas , Serpinas , Masculino , Humanos , Adulto Joven , Adulto , Neuroserpina , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Cuerpos de Inclusión/patología , Imagen por Resonancia Magnética/métodos
5.
Acta Neurol Belg ; 124(2): 377-388, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37917293

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia associated with amyloid beta (Aß) deposition. Dysfunction of the neuronal clearance pathway promotes the accumulation of Aß. The plasminogen-activating system (PAS) is controlled by various enzymes like tissue plasminogen activators (tPA). Neuronal tPA enhances the conversion of plasminogen to plasmin, which cleaves Aß; this function is controlled by many inhibitors of PAS, including a plasminogen-activating inhibitor (PAI-1) and neuroserpin. Therefore, the objective of the present narrative review was to explore the potential role of tPA/neuroserpin in the pathogenesis of AD. PAI-1 activity is increased in AD, which is involved in accumulating Aß. Progressive increase of Aß level during AD neuropathology is correlated with the over-production of PAI-1 with subsequent reduction of plasmin and tPA activities. Reducing plasmin and tPA activities promote Aß by reducing Aß clearance. Neuroserpin plays a critical role in the pathogenesis of AD as it regulates the expression and accumulation of Aß. Higher expression of neuroserpin inhibits the neuroprotective tPA and the generation of plasmin with subsequent reduction in the clearance of Aß. These observations raise conflicting evidence on whether neuroserpin is neuroprotective or involved in AD progression. Thus, neuroserpin over-expression with subsequent reduction of tPA may propagate AD neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Activador de Tejido Plasminógeno , Péptidos beta-Amiloides/metabolismo , Neuroserpina , Fibrinolisina/metabolismo , Inhibidor 1 de Activador Plasminogénico , Plasminógeno/metabolismo
6.
Mol Ther ; 31(7): 2056-2076, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905120

RESUMEN

Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Beclina-1/metabolismo , Modelos Animales de Enfermedad , Glaucoma/genética , Glaucoma/terapia , Glaucoma/metabolismo , Apoptosis/genética , Presión Intraocular , Neuroserpina
7.
Immunobiology ; 228(2): 152339, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680978

RESUMEN

Preeclampsia is a hypertensive disease of pregnancy associated with intense inflammatory and pro-coagulant responses. Neuroserpin is a serine protease inhibitor that has been involved in neurological and immune processes and has not yet been investigated in preeclampsia. Herein, we evaluated neuroserpin levels in association with other inflammatory mediators (IL-17A, IL-33, and CXCL-16) during severe preeclampsia. The mediators' plasma levels were measured by immunoassays in 24 pregnant women with severe preeclampsia (early preeclampsia: N = 17, late preeclampsia: N = 7), 34 normotensive pregnant women, and 32 non-pregnant women. In general, pregnancy was associated with higher levels of neuroserpin, IL-17A, IL-33, and CXCL-16 than the non-pregnant state. However, this increase was attenuated in pregnancies complicated by severe preeclampsia. Although neuroserpin levels did not differ between normotensive pregnant women and pregnant women with severe preeclampsia, neuroserpin levels tended to be lower in early-onset than in late-onset severe preeclampsia. There were positive correlations between neuroserpin and IL-17A, neuroserpin and CXCL-16, and IL-17A and CXCL-16 levels in women with severe preeclampsia. In addition, although the risk for developing severe preeclampsia was higher in older women in this study, maternal age did not significantly influence the mediators' levels, nor their correlations in the preeclampsia group. In summary, our data suggest that neuroserpin might be a potential biomarker for early-onset severe preeclampsia and, that the imbalance among neuroserpin, IL-17A, IL-33, and CXCL-16 levels may be associated with the pathogenesis of preeclampsia, regardless of the maternal age.


Asunto(s)
Citocinas , Preeclampsia , Embarazo , Femenino , Humanos , Anciano , Interleucina-17 , Interleucina-33 , Biomarcadores , Estudios de Casos y Controles , Neuroserpina
8.
Seizure ; 103: 137-147, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36417830

RESUMEN

BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB), a rare neurogenetic disease, is characterized by progressive cognitive decline and myoclonus and caused by pathogenic variants of the SERPINI1 gene that lead to the formation of neuroserpin inclusion bodies. METHODS: We described the case of an Asian patient with FENIB associated with a pathogenic variant of SERPINI1 and summarized and analyzed the clinical characteristics of the case. In addition, we conducted a literature review of previously reported patients with this disease. RESULTS: The patient, a 16-year-old Chinese girl, presented with progressive cognitive decline and myoclonus that had started at the age of 11 years. The girl was found to carry a de novo heterozygous c.1175G>A (p.G392E) variant of the SERPINI1 gene, which is a pathogenic variant according to the guidelines of the American College of Medical Genetics and Genomics. She had responded poorly to antiseizure medications (ASMs). At the last follow-up, her myoclonus was still out of control, and her self-care ability was poor. Our literature review revealed that 13 similar cases (including 9 cases in male patients) have been reported so far, in which six pathogenetic variations in SERPINI1, including G392E, were responsible for FENIB. All the patients presented with myoclonus, and 12 patients had experienced at least one other type of seizure. Further, as observed in our case, 9 out of 12 patients did not respond to ASMs. Progressive cognitive decline was observed in all the patients, and 10 out of 13 patients had dyskinesia. The median age of disease onset was 21 years, and the median age at the time of death was 33 years. Further, 9 out of 13 patients showed signs of cerebral and/or cerebellar atrophy. Finally, neuroserpin inclusion bodies were identified in six patients who underwent brain biopsy or autopsy. CONCLUSIONS: Pathogenic variants of SERPINI1 should be suspected in children with progressive cognitive decline and myoclonus, especially in those with progressive myoclonus epilepsy. Further, gene detection and brain biopsy are important means for the diagnosis of FENIB.


Asunto(s)
Encefalopatías , Mioclonía , Serpinas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Mioclonía/genética , Serpinas/genética , Neuroserpina
9.
Biosci Rep ; 42(12)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36408789

RESUMEN

Neuroserpin (NS) is predominantly expressed in the brain and is the primary inhibitor of tissue plasminogen activator (tPA). NS variants are associated with the neurogenerative disease termed familial encephalopathy with neuroserpin inclusion bodies (FENIB). The disease is characterized by variable age of onset and severity. The reactive center loop (RCL) insertion-based inhibitory mechanism of NS requires a coordinated conformational change leading to a shift in the strands of the ß-sheet A and movement of helix F. Strand 1A is connected to the helix F at its C terminal end and with the strand 2A at its N terminal, both these domain move for accommodating the inserting loop; therefore, a variant that influences their movement may alter the inhibition rates. A molecular dynamic simulation analysis of a H138C NS variant from strand 1A showed a large decrease in conformational fluctuations as compared with wild-type NS. H138 was mutated, expressed, purified and a native-PAGE and transmission electron microscopy (TEM) analysis showed that this variant forms large molecular weight aggregates on a slight increase in temperature. However, a circular dichroism analysis showed its secondary structure to be largely conserved. Surprisingly, its tPA inhibition activity and complex formation remain unhindered even after the site-specific labeling of H138C with Alexa fluor C5 maleimide. Further, a helix F-strand 1A (W154C-H138C) double variant still shows appreciable inhibitory activity. Increasingly, it appears that aggregation and not loss of inhibition is the more likely cause of shutter region-based variants phenotypes, indicating that hindering polymer formation using small molecules may retain inhibitory activity in pathological variants of NS.


Asunto(s)
Neuropéptidos , Serpinas , Polimerizacion , Activador de Tejido Plasminógeno , Serpinas/genética , Neuropéptidos/genética , Neuroserpina
10.
Cell Mol Life Sci ; 79(8): 437, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864382

RESUMEN

The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients.


Asunto(s)
Antioxidantes , Neuronas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Estrés del Retículo Endoplásmico , Epilepsias Mioclónicas , Trastornos Heredodegenerativos del Sistema Nervioso , Humanos , Ratones , FN-kappa B/metabolismo , Neuronas/metabolismo , Neuropéptidos , Polímeros , Serpinas , Neuroserpina
11.
Cell Mol Life Sci ; 79(3): 172, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244780

RESUMEN

Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.


Asunto(s)
Enfermedades del Sistema Nervioso/patología , Neuropéptidos/metabolismo , Serpinas/metabolismo , Axones/metabolismo , Comunicación Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/metabolismo , Plasticidad Neuronal , Neuropéptidos/química , Plasminógeno/metabolismo , Serpinas/química , Transducción de Señal , Activador de Tejido Plasminógeno/metabolismo , Neuroserpina
12.
Transl Stroke Res ; 13(5): 801-815, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35122213

RESUMEN

Tissue plasminogen activator (tPA) is a multifunctional protease. In blood tPA is best understood for its role in fibrinolysis, whereas in the brain tPA is reported to regulate blood-brain barrier (BBB) function and to promote neurodegeneration. Thrombolytic tPA is used for the treatment of ischemic stroke. However, its use is associated with an increased risk of hemorrhagic transformation. In blood the primary regulator of tPA activity is plasminogen activator inhibitor 1 (PAI-1), whereas in the brain, its primary inhibitor is thought to be neuroserpin (Nsp). In this study, we compare the effects of PAI-1 and Nsp deficiency in a mouse model of ischemic stroke and show that tPA has both beneficial and harmful effects that are differentially regulated by PAI-1 and Nsp. Following ischemic stroke Nsp deficiency in mice leads to larger strokes, increased BBB permeability, and increased spontaneous intracerebral hemorrhage. In contrast, PAI-1 deficiency results in smaller infarcts and increased cerebral blood flow recovery. Mechanistically, our data suggests that these differences are largely due to the compartmentalized action of PAI-1 and Nsp, with Nsp deficiency enhancing tPA activity in the CNS which increases BBB permeability and worsens stroke outcomes, while PAI-1 deficiency enhances fibrinolysis and improves recovery. Finally, we show that treatment with a combination therapy that enhances endogenous fibrinolysis by inhibiting PAI-1 with MDI-2268 and reduces BBB permeability by inhibiting tPA-mediated PDGFRα signaling with imatinib significantly reduces infarct size compared to vehicle-treated mice and to mice with either treatment alone.


Asunto(s)
Hemorragia Cerebral , Accidente Cerebrovascular Isquémico , Neuropéptidos , Inhibidor 1 de Activador Plasminogénico , Serpinas , Animales , Barrera Hematoencefálica , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/tratamiento farmacológico , Trastornos Hemorrágicos , Ratones , Neuropéptidos/metabolismo , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/metabolismo , Serpinas/metabolismo , Activador de Tejido Plasminógeno/efectos adversos , Neuroserpina
13.
Neurosci Lett ; 762: 136175, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34400286

RESUMEN

Serpini1, which encodes neuroserpin, has been implicated in the development and maintenance of the nervous system. In this study, an inducible neuroserpin overexpression transgenic zebrafish was generated to investigate its role in different developmental stages. Neuroserpin overexpression was induced by doxycycline in larval and adult zebrafish respectively. Locomotion and thigmotaxis were recorded and analyzed using the ZebraBox high-throughput monitoring equipment and the ZebraLab software system. We find that Tg (serpini1) (+DOX) zebrafish larvae are more hypoactive than their wild-type counterparts at 7 day-postfertilization and anxiety-like behavior is observed in Tg (serpini1) (+DOX) adult zebrafish at 3 month-postfertilization. Furthermore, RNA-sequencing analysis reveals that neuroserpin overexpression affects neurodegeneration-related gene expression. In summary, we report that neuroserpin overexpression in larval and adult zebrafish shows different behavioral phenotypes.


Asunto(s)
Conducta Animal/fisiología , Neuropéptidos/metabolismo , Serpinas/metabolismo , Animales , Animales Modificados Genéticamente , Larva , Locomoción/fisiología , Fenotipo , Regulación hacia Arriba , Pez Cebra , Neuroserpina
14.
Cell Mol Life Sci ; 78(19-20): 6409-6430, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34405255

RESUMEN

Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.


Asunto(s)
Neuropéptidos/metabolismo , Serpinas/metabolismo , Animales , Axones/metabolismo , Epilepsias Mioclónicas/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Polimerizacion , Neuroserpina
15.
Front Immunol ; 12: 629391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122403

RESUMEN

Little is known about the involvement of type 2 immune response-promoting intestinal tuft cells in metabolic regulation. We here examined the temporal changes in small intestinal tuft cell number and activity in response to high-fat diet-induced obesity in mice and investigated the relation to whole-body energy metabolism and the immune phenotype of the small intestine and epididymal white adipose tissue. Intake of high fat diet resulted in a reduction in overall numbers of small intestinal epithelial and tuft cells and reduced expression of the intestinal type 2 tuft cell markers Il25 and Tslp. Amongst >1,700 diet-regulated transcripts in tuft cells, we observed an early association between body mass expansion and increased expression of the gene encoding the serine protease inhibitor neuroserpin. By contrast, tuft cell expression of genes encoding gamma aminobutyric acid (GABA)-receptors was coupled to Tslp and Il25 and reduced body mass gain. Combined, our results point to a possible role for small intestinal tuft cells in energy metabolism via coupled regulation of tuft cell type 2 markers and GABA signaling receptors, while being independent of type 2 immune cell involvement. These results pave the way for further studies into interventions that elicit anti-obesogenic circuits via small intestinal tuft cells.


Asunto(s)
Metabolismo Energético , Células Epiteliales/metabolismo , Intestino Delgado/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Regulación de la Expresión Génica , Interleucinas/genética , Interleucinas/metabolismo , Intestino Delgado/inmunología , Masculino , Ratones Endogámicos C57BL , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/etiología , Obesidad/genética , Obesidad/inmunología , Fenotipo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Serpinas/genética , Serpinas/metabolismo , Transducción de Señal , Factores de Tiempo , Aumento de Peso , Linfopoyetina del Estroma Tímico , Neuroserpina
16.
Neurochem Int ; 148: 105113, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171416

RESUMEN

Dysfunctions of the neuronal-glial crosstalk and/or impaired signaling of neurotrophic factors represent key features of the maladaptive changes in the central nervous system (CNS) in neuroinflammatory as neurodegenerative disorders. Tissue plasminogen activator (tPA)/plasminogen (PA)/plasmin system has been involved in either process of maturation and degradation of nerve growth factor (NGF), highlighting multiple potential targets for new therapeutic strategies. We here investigated the role of intrathecal (i.t.) delivery of neuroserpin (NS), an endogenous inhibitor of plasminogen activators, on neuropathic behavior and maladaptive synaptic plasticity in the rat spinal cord following spared nerve injury (SNI) of the sciatic nerve. We demonstrated that SNI reduced spinal NGF expression, induced spinal reactive gliosis, altering the expression of glial and neuronal glutamate and GABA transporters, reduced glutathione (GSH) levels and is associated to neuropathic behavior. Beside the increase of NGF expression, i.t. NS administration reduced reactive gliosis, restored synaptic homeostasis, GSH levels and reduced neuropathic behavior. Our results hereby highlight the essential role of tPA/PA system in the synaptic homeostasis and mechanisms of maladaptive plasticity, sustaining the beneficial effects of NGF-based approach in neurological disorders.


Asunto(s)
Fibrinolisina/antagonistas & inhibidores , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Plasminógeno/antagonistas & inhibidores , Médula Espinal/fisiopatología , Animales , Conducta Animal , Gliosis , Inyecciones Espinales , Masculino , Neuralgia/psicología , Neuropéptidos/administración & dosificación , Neuropéptidos/uso terapéutico , Traumatismos de los Nervios Periféricos/psicología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático/lesiones , Serpinas/administración & dosificación , Serpinas/uso terapéutico , Neuroserpina
17.
Sci Rep ; 11(1): 8766, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888787

RESUMEN

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Neuropéptidos/genética , Serpinas/genética , Sinapsis/patología , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/fisiología , Serpinas/metabolismo , Serpinas/fisiología , Neuroserpina
18.
IUBMB Life ; 73(7): 941-952, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33893722

RESUMEN

Neuroserpin is a serine protease inhibitor expressed mainly in the brain and at low levels in other tissues like the kidney, testis, heart, and spinal cord. It is involved in the inhibition of tissue plasminogen activator (tPA), plasmin, and to a lesser extent, urokinase-type plasminogen (uPA). Neuroserpin has also been shown to plays noninhibitory roles in the regulation of N-cadherin-mediated cell adhesion. It is involved in neuroprotection from seizure and stroke through tPA-mediated inhibition and also through its other protease targets. Mutations in critical domains of neuroserpin lead to its polymerization and neuronal death. In this study, a novel truncated isoform of human neuroserpin was identified in the brain and liver, which was confirmed by reverse transcriptase-PCR and DNA sequencing using exon-specific primers. Structural characterization of novel isoform using MD simulations studies indicated that it lacks the reactive center loop (RCL) but largely maintains its secondary structure fold. The novel truncated variant was cloned, expressed, and purified. A comparative intrinsic fluorescence and 4,4'-bis-1-anilino naphthalene 8-sulfonate studies revealed a decrease in fluorescence emission intensity and a more exposed hydrophobic surface as compared to the reported isoform. However, the novel isoform has lost its ability for tPA inhibition and complex formation. The absence of RCL indicates a noninhibitory role for the truncated isoform, prompting a detailed search and identification of two smaller isoforms in the human brain. With indications of the noninhibitory role of neuroserpin, identifying novel isoforms that appear to be without the tPA recognition domain is significant.


Asunto(s)
Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Serpinas/química , Serpinas/genética , Serpinas/metabolismo , Empalme Alternativo , Encéfalo/metabolismo , Fluorescencia , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/metabolismo , Simulación de Dinámica Molecular , Isoformas de Proteínas , Reproducibilidad de los Resultados , Activador de Tejido Plasminógeno/metabolismo , Neuroserpina
19.
Int J Biol Macromol ; 176: 117-125, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33516851

RESUMEN

Neuroserpin (NS) is an inhibitory protein of serpin super family, its shutter region variants have high propensity to aggregate leading to pathological disorders like familial encephalopathy with NS inclusion bodies (FENIB). Helix F and ß-sheet A of NS participate in the tissue plasminogen activator (tPA) inhibition but the mechanism is not yet completely understood. A microsecond (µs) molecular dynamics simulation of the helix F and strand 3A variants showed predominant fluctuations in the loop connecting the strands of ß-sheet A. Therefore to understand the role of helix F and strand 3A of ß-sheet A, cysteine was incorporated at the position N182 in stand 3A (N182C) and position W154 (W154C) in the helix F using site-directed mutagenesis. Purified variants were further labeled with Alexa Fluor488 C5 maleimide dye. Temperature dependent study using non-denaturing PAGE showed the formation of large aggregates of helix F variant W154C but not the strand 3A N182C variant. Interestingly tPA inhibition was found to be decreased in the labeled N182C with decreased tPA-complex formation as compared to labeled W154C NS variant. The fluorescence emission intensity of the labeled helix F variant W154C decreased in the presence of an increasing concentration of tPA, whereas an increase in emission intensity was observed in labeled strand 3A variant N182C, indicating more exposure of strand 3A and shielding of helix F. Taken together the data shows that helix F has a predominant role in the aggregation but a minor role in the inhibition mechanism.


Asunto(s)
Neuropéptidos/química , Serpinas/química , Colorantes Fluorescentes , Humanos , Maleimidas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Agregado de Proteínas , Conformación Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serpinas/genética , Activador de Tejido Plasminógeno/farmacología , Neuroserpina
20.
Curr Neuropharmacol ; 19(8): 1367-1378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33032511

RESUMEN

Tissue plasminogen activator (tPA) is commonly used to treat acute ischemic stroke within an appropriate therapeutic window. Its inhibitor, neuroserpin (NSP), is reported to exhibit neuroprotective effects on stroke. This review aims to summarize, from literature, the available evidence, potential mechanisms, and knowledge limitations regarding the neuroprotective role of NSP in stroke. All the available evidence indicates that the regulation of the inflammatory response may play a key role in the mechanisms of NSP, which involve all the constituents of the neuroimmune axis. The neuroinflammatory response triggered by stroke can be reversed by NSP, with complicated mechanisms such as maintenance and reconstruction of the structure and function of the blood-brain barrier (BBB), protection of the cells in the central nervous system, and suppression of cell death in both ischemic and hemorrhagic stroke. Moreover, available evidence strongly suggests a tPA-independent mechanism is involved in NSP. However, there are many important issues that are still unclear and need further investigation, such as the effects of NSP on hemorrhagic stroke, the role of the tPA-independent neuroprotective mechanisms, and the clinical application prospects of NSP. We believe our work will be helpful to further understand the neuroprotective role of NSP.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Accidente Cerebrovascular , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Hemorrágico , Humanos , Neuropéptidos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Serpinas , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno , Neuroserpina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...