Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32432545

RESUMEN

Neuromodulatory systems are essential for remodeling glutamatergic connectivity during experience-dependent cortical plasticity. This permissive/enabling function of neuromodulators has been associated with their capacity to facilitate the induction of Hebbian forms of long-term potentiation (LTP) and depression (LTD) by affecting cellular and network excitability. In vitro studies indicate that neuromodulators also affect the expression of Hebbian plasticity in a pull-push manner: receptors coupled to the G-protein Gs promote the expression of LTP at the expense of LTD, and Gq-coupled receptors promote LTD at the expense of LTP. Here we show that pull-push mechanisms can be recruited in vivo by pairing brief monocular stimulation with pharmacological or chemogenetical activation of Gs- or Gq-coupled receptors to respectively enhance or reduce neuronal responses in primary visual cortex. These changes were stable, inducible in adults after the termination of the critical period for ocular dominance plasticity, and can rescue deficits induced by prolonged monocular deprivation.


Asunto(s)
Predominio Ocular/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neurotransmisores/agonistas , Receptores Acoplados a Proteínas G/agonistas , Corteza Visual/fisiología , Animales , Predominio Ocular/efectos de los fármacos , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neurociencias , Norepinefrina/administración & dosificación , Estimulación Luminosa , Serotonina/administración & dosificación , Visión Monocular/efectos de los fármacos , Visión Monocular/fisiología , Corteza Visual/efectos de los fármacos
2.
Front Immunol ; 11: 308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265899

RESUMEN

The dense innervation of the gastro-intestinal tract with neuronal networks, which are in close proximity to immune cells, implies a pivotal role of neurons in modulating immune functions. Neurons have the ability to directly sense danger signals, adapt immune effector functions and integrate these signals to maintain tissue integrity and host defense strategies. The expression pattern of a large set of immune cells in the intestine characterized by receptors for neurotransmitters and neuropeptides suggest a tight neuronal hierarchical control of immune functions in order to systemically control immune reactions. Compelling evidence implies that targeting neuro-immune interactions is a promising strategy to dampen immune responses in autoimmune diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric stimulation of vagal fibers has been shown to be an extremely effective treatment strategy against overwhelming immune reactions, even after exhausted conventional treatment strategies. Such findings argue that the nervous system is underestimated coordinator of immune reactions and underline the importance of neuro-immune crosstalk for body homeostasis. Herein, we review neuro-immune interactions with a special focus on disease pathogenesis throughout the gastro-intestinal tract.


Asunto(s)
Homeostasis/inmunología , Inmunidad/inmunología , Neuroinmunomodulación/inmunología , Animales , Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Sistema Nervioso Autónomo/fisiología , Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Ileus/inmunología , Ileus/terapia , Inmunidad Innata , Enfermedades Inflamatorias del Intestino/inmunología , Linfocitos/inmunología , Neuroinmunomodulación/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/inmunología , Sistemas Neurosecretores/fisiología , Neurotransmisores/agonistas , Neurotransmisores/fisiología , Complicaciones Posoperatorias/inmunología , Complicaciones Posoperatorias/terapia , Receptores de Neurotransmisores/inmunología , Sepsis/inmunología , Sepsis/terapia , Simbiosis , Estimulación del Nervio Vago
3.
Psychopharmacology (Berl) ; 236(1): 143-161, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30116858

RESUMEN

There is a pressing need to improve treatments for anxiety. Although exposure-based therapy is currently the gold-standard treatment, many people either do not respond to this therapy or experience a relapse of symptoms after treatment has ceased. In recent years, there have been many novel pharmacological agents identified in preclinical research that have potential as adjuncts for exposure therapy, yet very few of these are regularly integrated into clinical practice. Unfortunately, the robust effects observed in the laboratory animal often do not translate to a clinical population. In this review, we discuss how age, sex, genetics, stress, medications, diet, alcohol, and the microbiome can vary across a clinical population and yet are rarely considered in drug development. While not an exhaustive list, we have focused on these factors because they have been shown to influence an individual's vulnerability to anxiety and alter the neurotransmitter systems often targeted by pharmacological adjuncts to therapy. We argue that for potential adjuncts to be successfully translated from the lab to the clinic empirical research must be broadened to consider how individual difference factors will influence drug efficacy.


Asunto(s)
Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Desarrollo de Medicamentos/métodos , Extinción Psicológica/fisiología , Medicina de Precisión/métodos , Animales , Ansiolíticos/farmacología , Ansiedad/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Desarrollo de Medicamentos/tendencias , Extinción Psicológica/efectos de los fármacos , Humanos , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Medicina de Precisión/tendencias
4.
Lipids Health Dis ; 17(1): 152, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973282

RESUMEN

BACKGROUND: This study explored the possible mechanism of flavones from Vitis vinifera L. (VTF) on neurotransmitters, synaptic transmission and related learning and memory in rats with Alzheimer disease (AD). METHODS: The researchers injected amyloid-ß(25-35) into the hippocampus to establish AD model rats. The Sprague-Dawley (SD) rats were divided into a control group, a donepezil group, an AD model group, a VTF low-dose group, a VTF medium-dose group and a VTF high-dose group. The researchers detected the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) according to kit instructions. The protein expression of brain-derived neurotrophic factor (BDNF), synaptotagmin-1 (SYT1) and cyclic adenosine monophosphate response element binding protein (CREB) in the rats' hippocampi was detected by immunohistochemistry and Western blot, and the gene expression of cAMP-regulated enhancer (CRE) was detected by real-time quantitative polymerase chain reaction (PCR). RESULTS: VTF may enhance the protein expression of p-CREB, BDNF and SYT1 in rat hippocampi, depending on dose. The messenger RNA (mRNA) level of CREB was significantly higher in the VTF high-dose group than in the model group, which was consistent with the results of Western blotting. VTF may reduce the activity of AChE and increase that of ChAT in rat hippocampi. Finally, VTF effectively improved the learning and memory abilities of AD rats. CONCLUSIONS: VTF can promote synaptic plasticity and indirectly affect the expression of cholinergic neurotransmitters, which may be one mechanism of VTF protection in AD rats.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Flavonas/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Nootrópicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Vitis/química , Acetilcolina/agonistas , Acetilcolina/biosíntesis , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/administración & dosificación , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Donepezilo , Flavonas/aislamiento & purificación , Regulación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Indanos/farmacología , Masculino , Neurotransmisores/agonistas , Neurotransmisores/biosíntesis , Nootrópicos/aislamiento & purificación , Fragmentos de Péptidos/administración & dosificación , Piperidinas/farmacología , Agregado de Proteínas , Ratas , Ratas Sprague-Dawley , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
5.
Mol Med Rep ; 17(3): 4163-4172, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29328415

RESUMEN

The endogenous neurotransmitter, noradrenaline, exerts anti-inflammatory and neuroprotective effects in vivo and in vitro. Reduced noradrenaline levels results in increased inflammation and neuronal damage. The primary source of noradrenaline in the central nervous system is tyrosine hydroxylase (TH)­positive neurons, located in the locus coeruleus (LC). TH is the rate­limiting enzyme for noradrenaline synthesis; therefore, regulation of TH protein expression and intrinsic enzyme activity represents the central means for controlling the synthesis of noradrenaline. Catalpol is an iridoid glycoside purified from Rehmannia glutinosa Libosch, which exerts a neuroprotective effect in multiple sclerosis (MS). The present study used an experimental mouse model of autoimmune encephalomyelitis to verify the neuroprotective effects of catalpol. Significant improvements in the clinical scores were observed in catalpol­treated mice. Furthermore, catalpol increased TH expression and increased noradrenaline levels in the spinal cord. In primary cultures, catalpol exerted a neuroprotective effect in rat LC neurons by increasing the noradrenaline output. These results suggested that drugs targeting LC survival and function, including catalpol, may be able to benefit patients with MS.


Asunto(s)
Antiinflamatorios/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Locus Coeruleus/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Norepinefrina/biosíntesis , Amidinas/antagonistas & inhibidores , Amidinas/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Bencilaminas/administración & dosificación , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Regulación de la Expresión Génica , Inmunización , Inyecciones Intraperitoneales , Glucósidos Iridoides/aislamiento & purificación , Locus Coeruleus/inmunología , Locus Coeruleus/patología , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Neuronas/inmunología , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Neurotransmisores/agonistas , Neurotransmisores/biosíntesis , Norepinefrina/agonistas , Oxidantes/antagonistas & inhibidores , Oxidantes/farmacología , Fragmentos de Péptidos/administración & dosificación , Cultivo Primario de Células , Rehmannia/química , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/inmunología
6.
Med Sci Monit ; 23: 818-825, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28196966

RESUMEN

BACKGROUND 5-HT6 receptor (5-HT6R) has pluripotent roles regulating secretion of neurotransmitters. However, whether 5-HT6R is involved in the development of vascular dementia (VD) remains unclear. To evaluate the role and mechanism of 5-HT6R in VD, this study established a rat VD model to evaluate the effect of selective 5-HT6R agonist on the expression of 5-HT6R mRNA and neurotransmitter. MATERIAL AND METHODS Eighty healthy male SD rats (7 weeks old) were randomly assigned to sham, model, 5-HT6R agonist, and placebo groups (N=20 each). A rat VD model was generated by permeant bilateral ligation of the common carotid artery. 5-HT6R agonist, placebo, or saline were given intraperitoneally for 4 weeks. The Morris water maze was utilized to test learning and memory function. Brains were extracted to separate the cortex and hippocampal tissues, in which glutamate and g-aminobutyric acid (GABA) levels were analyzed. mRNA and protein levels of 5-HT6R were determined by RT-PCR and immunohistochemistry (IHC), respectively. RESULTS Model rats had longer escape latency and fewer crossing platform times. Contents of DA, Glu, GABA, and Ach were lowered in cortical and hippocampal tissues, and 5-HT6R expression was suppressed (p<0.05). The application of 5-HT6R agonist shortened escape latency and increased the number of passing through the platform. It also improved hippocampal CA1 neuronal damage and elevated DA, Glu, GABA, and Ach contents and expression of 5-HT6R. Expression of 5-HT6R was not different from the placebo group. CONCLUSIONS Selective 5-HT6R agonist can alleviate learning deficit of VD rats, possibly via improving neurotransmitter levels in brain regions.


Asunto(s)
Demencia Vascular/tratamiento farmacológico , Receptores de Serotonina/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Aprendizaje , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Neurotransmisores/agonistas , Neurotransmisores/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
7.
Mol Diagn Ther ; 21(4): 357-373, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28197949

RESUMEN

Next-generation sequencing (NGS) has contributed to the identification of many monogenic epilepsy syndromes and is favouring earlier and more accurate diagnosis in a subset of paediatric patients with epilepsy. The cumulative information emerging from NGS studies is rapidly changing our comprehension of the relations between early-onset severe epilepsy and the associated neurological impairment, progressively delineating specific entities previously gathered under the umbrella definition of epileptic encephalopathies, thereby influencing treatment choices and limiting the most aggressive drug regimens only to those conditions that are likely to actually benefit from them. Although ion channel genes represent the gene family most frequently causally related to epilepsy, other genes have gradually been associated with complex developmental epilepsy conditions, revealing the pathogenic role of mutations affecting diverse molecular pathways that regulate membrane excitability, synaptic plasticity, presynaptic neurotransmitter release, postsynaptic receptors, transporters, cell metabolism, and many formative steps in early brain development. Some of these discoveries are being followed by proof-of-concept laboratory studies that might open new pathways towards personalized treatment choices. No specific treatment is available for most of the monogenic disorders that can now be diagnosed early using NGS, and the main benefits of knowing the specific cause include etiological diagnosis, better prognostication and genetic counselling; however, for a limited number of disorders, timely treatment based on their known molecular pathology is already possible and sometimes decisive. Discovery of a causative gene defect associated with a non-progressive course may reduce the need for further diagnostic investigations in the search for a progressive disorder at the biochemical and imaging level. NGS has also improved the turnaround time for molecular diagnosis and allowed more timely and straightforward treatment choices for specific conditions as well as avoiding needless investigations and inappropriate or unnecessary treatment choices.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Medicina de Precisión/métodos , Edad de Inicio , Niño , Diagnóstico Precoz , Epilepsia/genética , Epilepsia/fisiopatología , Expresión Génica , Asesoramiento Genético , Humanos , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mutación , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Receptores de Neurotransmisores/agonistas , Receptores de Neurotransmisores/antagonistas & inhibidores , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo
9.
Epilepsy Behav ; 71(Pt B): 124-129, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-25819950

RESUMEN

Here, we describe in generalized epilepsies the alterations of classical neurotransmitters and neuropeptides acting at specific subreceptors. In order to consider a network context rather than one based on focal substrates and in order to make the interaction between neurotransmitters and neuropeptides and their specific subreceptors comprehensible, neural networks in the hippocampus, thalamus, and cerebral cortex are described. In this disease, a neurotransmitter imbalance between dopaminergic and serotonergic neurons and between presynaptic GABAergic neurons (hypoactivity) and glutaminergic neurons (hyperactivity) occurs. Consequently, combined GABAA agonists and NMDA antagonists could furthermore stabilize the neural networks in a multimodal pharmacotherapy. The antiepileptic effect and the mechanisms of action of conventional and recently developed antiepileptic drugs are reviewed. The GASH:Sal animal model can contribute to examine the efficacy of antiepileptic drugs. The issues of whether the interaction of classical neurotransmitters with other subreceptors (5-HT7, metabotropic 5 glutaminergic, A2A adenosine, and alpha nicotinic 7 cholinergic receptors) or whether the administration of agonists/antagonists of neuropeptides might improve the therapeutic effect of antiepileptic drugs should be addressed. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Asunto(s)
Anticonvulsivantes/metabolismo , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Neuropéptidos/agonistas , Neuropéptidos/antagonistas & inhibidores , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Tálamo/efectos de los fármacos , Tálamo/metabolismo , Resultado del Tratamiento
10.
Neurocrit Care ; 24(3): 459-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26561305

RESUMEN

INTRODUCTION: Propofol exhibits neuroprotective effects mediated by the inhibition of excitatory amino acid (EAA) neurotransmitter release and potentiation of inhibitory amino acid (IAA) neurotransmitters. To our knowledge, this is the first study to investigate the effects of propofol on the EAA and IAA balance in neurogenic pulmonary edema (NPE). METHODS: Sixty male Wistar rats were randomized to Sham, NPE, Low-dose propofol, and High-dose propofol groups. NPE was induced via rapid injection of autologous blood (0.5 ml) into the cisterna magna. The Low- and High-dose propofol groups were pretreated with boluses of 2 and 5 mg kg(-1), respectively, prior to blood injection, followed by continuous propofol infusion at 6 and 15 mg kg(-1) h(-1), respectively. The mean arterial pressure (MAP), heart rate, intracranial pressure (ICP), peak inspiratory pressure (PIP), and arterial blood gases were continuously recorded. After 2 h, the lung wet-to-dry weight ratio, total protein concentration in the bronchoalveolar lavage fluid (BALF), brain water content, cortical EAA and IAA levels, chest X-ray, and histological staining of lung sections were evaluated. RESULTS: Blood injections into the cisterna magna induced NPE and hemodynamic changes. Propofol alleviated the increases in the MAP, ICP, and PIP, improved oxygenation and histopathological changes, ameliorated pulmonary and cerebral edema, increased the IAA brain levels, and decreased the ratio of Glu to γ-aminobutyric acid. CONCLUSIONS: The current findings suggest that propofol improves NPE likely via IAA accumulation and the regulation of EAA and IAA balance, which may represent an effective treatment for NPE.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotransmisores/metabolismo , Propofol/farmacología , Edema Pulmonar/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Animales , Edema Encefálico/etiología , Modelos Animales de Enfermedad , Aminoácidos Excitadores/antagonistas & inhibidores , Ácido Glutámico/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/administración & dosificación , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Propofol/administración & dosificación , Edema Pulmonar/etiología , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/efectos de los fármacos
12.
Curr Top Med Chem ; 14(18): 2044-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25335887

RESUMEN

Botulinum neurotoxins (BoNTs) are endopeptidases that target motor neurons and block acetylcholine neurotransmitter release. This action results in the muscle paralysis that defines the disease botulism. To date, there are no FDA-approved therapeutics to treat BoNT-mediated paralysis after intoxication of the motor neuron. Importantly, the rationale for pursuing treatments to counter these toxins is driven by their potential misuse. Current drug discovery efforts have mainly focused on small molecules, peptides, and peptidomimetics that can directly and competitively inhibit BoNT light chain proteolytic activity. Although this is a rational approach, direct inhibition of the Zn(2+) metalloprotease activity has been elusive as demonstrated by the dearth of candidates undergoing clinical evaluation. Therefore, broadening the scope of viable targets beyond that of active site protease inhibitors represents an additional strategy that could move the field closer to the clinic. Here we review the rationale, and discuss the outcomes of earlier approaches and highlight potential new targets for BoNT inhibition. These include BoNT uptake and processing inhibitors, enzymatic inhibitors, and modulators of neuronal processes associated with toxin clearance, neurotransmitter potentiation, and other pathways geared towards neuronal recovery and repair.


Asunto(s)
Antídotos/farmacología , Toxinas Botulínicas Tipo A/antagonistas & inhibidores , Botulismo/tratamiento farmacológico , Peptidomiméticos/farmacología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Antídotos/química , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/patología , Quelantes/química , Quelantes/farmacología , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neurotransmisores/agonistas , Neurotransmisores/metabolismo , Peptidomiméticos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Transmisión Sináptica/efectos de los fármacos
13.
Eksp Klin Farmakol ; 77(2): 3-7, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-24791332

RESUMEN

We have studied the influence of intraperitoneal introduction of a selective blocker of mitochondrial translocation protein 18kD PK11195 (5 mg/kg), indomethacin (5 and 10 mg/kg), finasteride (5 and 15 mg/kg), and neurosteroid pregnenolone (20 mg/kg) on the exploratory behavior of male BALB/c mice, C57BL/6 mice, and Wistar rats in open-field test. It is found that treatment with PK11195 weakens the exploratory behavior in open-field test in mice of both strains. Finasteride and indomethacin decrease the exploratory responses in rodents regardless of the species or type of stress emotional response phenotype. Pregnenolone possesses activating effect in open-field in open-field test, but enhances the inhibitory effect of finasteride in BALB/c mice.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Neurotransmisores/biosíntesis , Inhibidores de 5-alfa-Reductasa/farmacología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Conducta Exploratoria/fisiología , Finasterida/farmacología , Indometacina/farmacología , Isoquinolinas/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Pregnenolona/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología
14.
J Pharmacol Sci ; 121(2): 157-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23386378

RESUMEN

2-Arachidonoylglycerol (2-AG) is recognized as a potent endocannabinoid, which reduces synaptic transmission through cannabinoid CB(1) receptors, and is hydrolyzed by monoacylglycerol lipase (MGL) to arachidonic acid (AA), a cyclooxygenase substrate. We already reported that centrally administered MGL and cyclooxygenase inhibitors each reduced the intracerebroventricularly (i.c.v.) administered bombesin-induced secretion of adrenal catecholamines, while a centrally administered CB(1)-antagonist potentiated the response, indirectly suggesting bidirectional roles of brain 2-AG (stimulatory and inhibitory roles) in the bombesin-induced response. In the present study, we separately examined these bidirectional roles using 2-AG and 2-AG ether (2-AG-E) (stable 2-AG analog for MGL) in rats. 2-AG (0.5 µmol/animal, i.c.v.), but not 2-AG-E (0.5 µmol/animal, i.c.v.), elevated basal plasma catecholamines with JZL184 (MGL inhibitor)- and indomethacin (cyclooxygenase inhibitor)-sensitive brain mechanisms. 2-AG-E (0.1 µmol/animal, i.c.v.) effectively reduced the bombesin (1 nmol/animal, i.c.v.)-induced elevation of plasma catecholamines with rimonabant (CB(1) antagonist)-sensitive brain mechanisms. Immunohistochemical studies demonstrated the bombesin-induced activation of diacylglycerol lipase α (2-AG-producing enzyme)-positive spinally projecting neurons in the hypothalamic paraventricular nucleus, a control center of central adrenomedullary outflow. These results directly indicate bidirectional roles of brain 2-AG, a stimulatory role as an AA precursor and an inhibitory role as an endocannabinoid, in the bombesin-induced central adrenomedullary outflow in rats.


Asunto(s)
Médula Suprarrenal/efectos de los fármacos , Ácidos Araquidónicos/farmacología , Bombesina/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Catecolaminas/metabolismo , Endocannabinoides/farmacología , Glicéridos/farmacología , Neurotransmisores/agonistas , Médula Suprarrenal/metabolismo , Animales , Ácidos Araquidónicos/administración & dosificación , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacología , Bombesina/administración & dosificación , Agonistas de Receptores de Cannabinoides/administración & dosificación , Antagonistas de Receptores de Cannabinoides/farmacología , Catecolaminas/sangre , Inhibidores de la Ciclooxigenasa/farmacología , Interacciones Farmacológicas , Endocannabinoides/administración & dosificación , Glicéridos/administración & dosificación , Glicéridos/antagonistas & inhibidores , Indometacina/administración & dosificación , Indometacina/farmacología , Inyecciones Intraventriculares , Lipoproteína Lipasa/metabolismo , Masculino , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neurotransmisores/administración & dosificación , Neurotransmisores/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/metabolismo , Piperidinas/administración & dosificación , Piperidinas/farmacología , Pirazoles/administración & dosificación , Pirazoles/farmacología , Ratas , Rimonabant
15.
Cent Nerv Syst Agents Med Chem ; 12(4): 315-28, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23270323

RESUMEN

The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Neurotoxinas/farmacología , Péptidos/farmacología , Venenos de Serpiente/farmacología , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Barrera Hematoencefálica , Sistema Nervioso Central/citología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Hemodinámica/efectos de los fármacos , Humanos , Inyecciones Intraventriculares , Ratones , Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neurotoxinas/química , Neurotoxinas/clasificación , Neurotoxinas/aislamiento & purificación , Neurotoxinas/farmacocinética , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Manejo del Dolor , Percepción del Dolor/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacocinética , Péptidos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Venenos de Serpiente/química , Venenos de Serpiente/farmacocinética , Venenos de Serpiente/uso terapéutico , Serpientes , Fracciones Subcelulares/efectos de los fármacos
17.
Brain Res ; 1383: 154-68, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21300040

RESUMEN

To analyze mediatory mechanisms underlying attention-deficit hyperactivity disorder (ADHD) and their association with epilepsy, the electroencephalogram (EEG) responses to various centrally applied neurotransmitter agonists were studied in spontaneously hypertensive (SH), kainate-treated (KA), and normotensive (control) rats, with chronically implanted electrodes into the frontal cortex and hippocampus and a cannula into the lateral cerebral ventricle. In SH rats, the baseline EEG showed increased delta and beta2 activity in the hippocampus and decreased alpha/beta1 activity in both brain areas. In KA rats, these delta and alpha/beta1 effects were observed 2 weeks post-kainate, while the beta2 activity increase occurred after 5 weeks in the hippocampus and, to a greater extent, 9 weeks post-injection in both brain areas. In SH rats, NMDA increased delta and decreased alpha/beta1 activity, similar to KA rats 5 weeks post-injection. In SH rats, clonidine augmented theta/beta2 increase in the cortex and alpha suppression in both brain areas, in parallel with induction of beta2 activity in the hippocampus. These beta2 effects were observed 5 and 9 weeks post-kainate. In SH rats, baclofen produced robust delta/theta enhancement and alpha/beta1 suppression in both brain areas, with additional beta2 activity increase in the hippocampus, while muscimol was ineffective in both groups of rats. In KA rats, EEG responses to GABA agonists were similar to those in control. Our results demonstrate sensitization of NMDA receptors and α2-adrenoceptors both in SH and KA rats and that of GABAb receptors specifically in SH rats.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Epilepsia/fisiopatología , Lóbulo Frontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neurotransmisores/agonistas , Animales , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Baclofeno/farmacología , Clonidina/farmacología , Modelos Animales de Enfermedad , Electrodos Implantados , Electroencefalografía , Epilepsia/complicaciones , Epilepsia/metabolismo , Agonistas de Aminoácidos Excitadores/toxicidad , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Hipertensión/fisiopatología , Ácido Kaínico/toxicidad , Muscimol/farmacología , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratas , Ratas Endogámicas SHR , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
CNS Neurol Disord Drug Targets ; 9(1): 2-4, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20232494

RESUMEN

Alcoholism and other alcohol use disorders are major public health problems, and the success rates of non-pharmacological treatment of these disorders such as psychotherapy, cognitive-behavioral therapy, group therapy, or residential treatment programs,remain only modest at best. High rates of recidivism (relapse) in alcoholics attempting to remain abstinent are prevalent worldwide. In recent years abundant evidence has accumulated demonstrating that alcoholism is a complex and multifaceted disease of the brain caused by numerous genetic, neurobiological, developmental, environmental, and socioeconomic factors that are still not yet fully understood.There is thus a great need to improve the success rates of all forms of treatment of alcoholism not only in preventing relapse, but curbing active alcohol consumption and craving. The development of improved pharmacotherapies that could be used as adjuncts to the aforementioned non-pharmacological treatment approaches is one avenue of great interest to the scientific community and the general public. Currently there are only three medications approved by the U.S. Food and Drug Administration (FDA) for use in the treatment of alcohol abuse and alcoholism--disulfiram, naltrexone, and acamprosate. Yet medication compliance issues and the modest efficacy of these compounds leave substantial room for improvement. This special issue is devoted to reviewing the current status of these FDA approved medications in the treatment of alcoholism. In addition, preclinical and clinical evidence suggesting that other classes of medications might also be of potential use are reviewed, including anticonvulsants, GABAB receptor agonists, cholinergic receptor partial agonists, corticotropin-releasing factor and cannabinoid CB1 receptor antagonists, nociceptin receptor ligands, and the novel antipsychotic aripiprazole.


Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/tratamiento farmacológico , Trastornos del Sistema Nervioso Inducidos por Alcohol/fisiopatología , Alcoholismo/tratamiento farmacológico , Alcoholismo/fisiopatología , Neurofarmacología/métodos , Acamprosato , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Alcoholismo/metabolismo , Animales , Modelos Animales de Enfermedad , Disulfiram/farmacología , Disulfiram/uso terapéutico , Diseño de Fármacos , Humanos , Naltrexona/farmacología , Naltrexona/uso terapéutico , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/uso terapéutico , Neuropéptidos/agonistas , Neurofarmacología/tendencias , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Receptores de Neurotransmisores/agonistas , Receptores de Neurotransmisores/antagonistas & inhibidores , Taurina/análogos & derivados , Taurina/farmacología , Taurina/uso terapéutico
20.
J Neurochem ; 113(4): 919-29, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20202080

RESUMEN

The mechanisms by which chronic nicotine self-administration augments hypothalamo-pituitary-adrenal (HPA) responses to stress are only partially understood. Nicotine self-administration alters neuropeptide expression in corticotropin-releasing factor (CRF) neurons within paraventricular nucleus (PVN) and increases PVN responsiveness to norepinephrine during mild footshock stress. Glutamate and GABA also modulate CRF neurons, but their roles in enhanced HPA responsiveness to footshock during chronic self-administration are unknown. We show that nicotine self-administration augmented footshock-induced PVN glutamate release, but further decreased GABA release. In these rats, intra-PVN kynurenic acid, a glutamate receptor antagonist, blocked enhanced adrenocorticotropic hormone and corticosterone responses to footshock. In contrast, peri-PVN kynurenic acid, which decreases activity of GABA afferents to PVN, enhanced footshock-induced corticosterone secretion only in control rats self-administering saline. Additionally, in rats self-administering nicotine, footshock-induced elevation of corticosterone was significantly less than in controls after intra-PVN saclofen (GABA-B receptor antagonist). Therefore, the exaggerated reduction in GABA release by footshock during nicotine self-administration disinhibits CRF neurons. This disinhibition combined with enhanced glutamate input provides a new mechanism for HPA sensitization to stress by chronic nicotine self-administration. This mechanism, which does not preserve homeostatic plasticity, supports the concept that smoking functions as a chronic stressor that sensitizes the HPA to stress.


Asunto(s)
Neurotransmisores/metabolismo , Nicotina/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Hormona Adrenocorticotrópica/sangre , Hormona Adrenocorticotrópica/metabolismo , Animales , Corticosterona/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Ácido Glutámico/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Agonistas Nicotínicos/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración , Estrés Psicológico/fisiopatología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tabaquismo/metabolismo , Tabaquismo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...