Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.566
Filtrar
1.
Talanta ; 279: 126638, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39210548

RESUMEN

Detecting dopamine (DA) is critical for early diagnosis of neurological and psychiatric disorders. However, the presence of other catecholamine neurotransmitters with structural similarities to DA causes significant interference in its detection. Herein, we introduce S stripping defects via laser-induced MoS2 to functionalize MoS2 electrodes and improve their selectivity for DA electrochemical detection. The sensing results show its excellent immunity to interference from other neurotransmitters, ensuring the preservation of the DA electrochemical signal even in the mixed neurotransmitters such as acetylcholine (ACh), γ-aminobutyric acid (GABA), epinephrine (EP), norepinephrine (NP), and serotonin (5-HT). DFT calculations further reveal that the negatively charged S-stripping defects enhance DA adsorption on the surface of the functionalized MoS2 electrode, contributing to its excellent performance. Moreover, this functionalized electrodes successfully monitor DA released from living PC12 cells in the presence of other interference, highlighting its potential applicability in intercellular signaling communication.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Electrodos , Rayos Láser , Neurotransmisores , Dopamina/análisis , Células PC12 , Técnicas Electroquímicas/métodos , Animales , Neurotransmisores/análisis , Ratas , Disulfuros/química , Catecolaminas/análisis , Epinefrina/análisis , Norepinefrina/análisis , Teoría Funcional de la Densidad , Molibdeno
2.
Bioelectrochemistry ; 160: 108776, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39018612

RESUMEN

The levels of monoamine neurotransmitters (MNTs) including dopamine (DA), adrenaline (Adr), norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in cells are useful indicators to explore the pathogenesis of MNTs-related diseases such as Alzheimer's disease, Parkinson's disease and depression. Herein, we constructed a novel electrochemical sensing platform based on multi-walled carbon nanotubes (MWCNTs)-amine functionalized Zr (IV) metal-organic framework (UIO-66-NH2) nanocomposite for the detection of multiple MNTs including DA, Adr, NE and 5-HT. The synergistic effect between MWCNTs and UIO-66-NH2 endowed the nanocomposite with high specific surface area, low interface impedance and superior electrocatalytic activity, which effectively enhance the electrochemical performance of the sensor. The MWCNTs-UIO-66-NH2 nanocomposite-based sensor exhibited satisfied sensitivity for the quantitative measurement of DA, Adr, NE and 5-HT, as well as low detection limit. The outstanding biocompatibility of the constructed sensor permitted it to be successfully implemented for the real-time monitoring of DA released by PC12 and C6 cells, providing a promising strategy for clinical diagnosis of MNTs-related disorders and diseases.


Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Nanotubos de Carbono , Neurotransmisores , Nanotubos de Carbono/química , Nanocompuestos/química , Estructuras Metalorgánicas/química , Neurotransmisores/análisis , Ratas , Células PC12 , Animales , Técnicas Electroquímicas/métodos , Dopamina/análisis , Límite de Detección , Técnicas Biosensibles/métodos , Serotonina/análisis , Circonio/química , Monoaminas Biogénicas/análisis , Monoaminas Biogénicas/metabolismo , Norepinefrina/análisis , Ácidos Ftálicos
3.
Biosens Bioelectron ; 262: 116526, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954905

RESUMEN

Neurotransmitters (NTs) are molecules produced by neurons that act as the body's chemical messengers. Their abnormal levels in the human system have been associated with many disorders and neurodegenerative diseases, which makes the monitoring of NTs fundamentally important. Specifically for clinical analysis and understanding of brain behavior, simultaneous detection of NTs at low levels quickly and reliably is imperative for disease prevention and early diagnosis. However, the methods currently employed are usually invasive or inappropriate for multiple NTs detection. Herein, we developed a MXene-based impedimetric electronic tongue (e-tongue) for sensitive NT monitoring, using Nb2C, Nb4C3, Mo2C, and Mo2Ti2C3 MXenes as sensing units of the e-tongue, and Principal Component Analysis (PCA) as the data treatment method. The high specific surface area, distinct electrical properties, and chemical stability of the MXenes gave rise to high sensitivity and good reproducibility of the sensor array toward NT detection. Specifically, the e-tongue detected and differentiated multiple NTs (acetylcholine, dopamine, glycine, glutamate, histamine, and tyrosine) at concentrations as low as 1 nmol L-1 and quantified NTs present in a mixture. Besides, analyses performed with interferents and actual samples confirmed the system's potential to be used in clinical diagnostics. The results demonstrate that the MXene-based e-tongue is a suitable, rapid, and simple method for NT monitoring with high accuracy and sensitivity.


Asunto(s)
Técnicas Biosensibles , Nariz Electrónica , Neurotransmisores , Neurotransmisores/análisis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Diseño de Equipo , Análisis de Componente Principal , Límite de Detección
4.
Biosens Bioelectron ; 261: 116474, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870827

RESUMEN

Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Límite de Detección , Microelectrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Dopamina/análisis , Animales , Técnicas Electroquímicas/métodos , Diseño de Equipo , Encéfalo/metabolismo , Humanos , Neurotransmisores/análisis
5.
Anal Bioanal Chem ; 416(18): 4207-4218, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822822

RESUMEN

Mass spectrometry imaging (MSI) platforms such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) are advantageous for a variety of applications, including elucidating the localization of neurotransmitters (NTs) and related molecules with respect to ion abundance across a sample without the need for derivatization or organic matrix application. While IR-MALDESI-MSI conventionally uses a thin exogenous ice matrix to improve signal abundance, it has been previously determined that sucrose embedding without the ice matrix improves detection of lipid species in striatal, coronal mouse brain sections. This work considers components of this workflow to determine the optimal sample preparation and matrix to enhance the detection of NTs and their related metabolites in coronal sections from the striatal region of the mouse brain. The discoveries herein will enable more comprehensive follow-on studies for the investigation of NTs to enrich biological pathways and interpretation related to neurodegenerative diseases and ischemic stroke.


Asunto(s)
Encéfalo , Neurotransmisores , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Neurotransmisores/análisis , Neurotransmisores/metabolismo , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Química Encefálica
6.
Angew Chem Int Ed Engl ; 63(34): e202406401, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38831475

RESUMEN

Neurotransmitters play a crucial role in regulating communication between neurons within the brain and central nervous system. Thus, imaging neurotransmitters has become a high priority in neuroscience. This minireview focuses on recent advancements in the development of fluorescent small-molecule fluorescent probes for neurotransmitter imaging and applications of these probes in neuroscience. Innovative approaches for probe design are highlighted as well as attributes which are necessary for practical utility, with a view to inspiring new probe development capable of visualizing neurotransmitters.


Asunto(s)
Colorantes Fluorescentes , Neurotransmisores , Colorantes Fluorescentes/química , Neurotransmisores/análisis , Humanos , Animales , Imagen Óptica , Bibliotecas de Moléculas Pequeñas/química
7.
Anal Methods ; 16(24): 3815-3830, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38738307

RESUMEN

Nicotine crosses the blood-brain barrier and interacts with nicotinic acetylcholine receptors, initiating a cascade of neurotransmitter effects with potential therapeutic implications for neurodegenerative conditions such as Alzheimer's and Parkinson's disease. The hippocampus, pivotal for cognitive processes, plays a crucial role in nicotine-mediated cognitive enhancement due to its abundant expression of nicotinic acetylcholine receptors, particularly the α7 subtype, which is heavily implicated in hippocampus-related behavioral functions and dysfunctions. However, the intricate process of nicotine metabolism within the hippocampus remains poorly understood, impeding our comprehension of how nicotine and its metabolites modulate neurotransmitter dynamics. To address this gap, we have developed and validated a novel methodology combining microdialysis with UHPLC-MS/MS, enabling simultaneous detection of 12 neurotransmitters, nicotine, and its seven metabolites within the rat hippocampus. The linearity range of the targeted compounds is satisfactory (R2 > 0.9970), with intra-day and inter-day precision not exceeding 12.7%, and accuracy ranging from -12.4% to 13.7%. Our findings reveal differential pharmacokinetics of nicotine and its metabolites in the α7KO group compared to the control group, characterized by heightened nicotine absorption and slower elimination and distribution in the former. Notably, the pharmacokinetic parameters of cotinine exhibit similarity across both groups. Studies investigating the impact of nicotine on monoamine neurotransmitters have elucidated its capacity to augment the release of dopamine, serotonin, norepinephrine, glutamate, and acetylcholine in the rat hippocampus. This integrated approach facilitates a comprehensive analysis of neurotransmitter alterations within the hippocampal region following nicotine administration, thereby providing robust technical support and scientific rationale for understanding the neurochemical effects of nicotine and its metabolites. Further exploration into the pharmacokinetics and pharmacodynamics of nicotine holds promise for uncovering novel therapeutic avenues in the management of neurodegenerative diseases such as Alzheimer's.


Asunto(s)
Hipocampo , Microdiálisis , Neurotransmisores , Nicotina , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Nicotina/farmacocinética , Nicotina/metabolismo , Animales , Hipocampo/metabolismo , Microdiálisis/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Neurotransmisores/metabolismo , Neurotransmisores/análisis , Ratas , Masculino
8.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38693685

RESUMEN

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Asunto(s)
Compuestos de Cadmio , Dopamina , Técnicas Electroquímicas , Nanoestructuras , Neurotransmisores , Sulfuros , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Dopamina/análisis , Dopamina/sangre , Nanoestructuras/química , Neurotransmisores/análisis , Neurotransmisores/sangre , Humanos , Sulfuros/química , Procesos Fotoquímicos , Saliva/química , Teoría Funcional de la Densidad , Técnicas Biosensibles/métodos , Semiconductores , Microelectrodos
9.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692791

RESUMEN

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Asunto(s)
Antibacterianos , Carbono , Cobre , Neurotransmisores , Carbono/química , Antibacterianos/análisis , Antibacterianos/orina , Antibacterianos/sangre , Neurotransmisores/orina , Neurotransmisores/análisis , Neurotransmisores/sangre , Porosidad , Cobre/química , Humanos , Nanosferas/química , Colorimetría/métodos , Compuestos Férricos/química , Materiales Biomiméticos/química , Animales , Técnicas Biosensibles/métodos , Cloranfenicol/análisis , Cloranfenicol/orina , Límite de Detección
10.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38606455

RESUMEN

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Asunto(s)
Incrustaciones Biológicas , Técnicas Electroquímicas , Neurotransmisores , Neurotransmisores/análisis , Incrustaciones Biológicas/prevención & control , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Animales , Compuestos de Plata/química , Fibra de Carbono/química , Microelectrodos , Sulfuros/química , Electrodos
11.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 367-392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639991

RESUMEN

The ability to measure dynamic changes in neurochemicals with high spatiotemporal resolution is essential for understanding the diverse range of functions mediated by the brain. We review recent advances in genetically encoded sensors for detecting neurochemicals and discuss their in vivo applications. For example, notable progress has been made with respect to sensors for second messengers such as cyclic adenosine monophosphate, enabling in vivo real-time monitoring of these messengers at single-cell and even subcellular resolution. Moreover, the emergence of highly sensitive sensors for neurotransmitters and neuromodulators has greatly accelerated the study of these signaling molecules in a wide variety of behavioral models using an array of powerful imaging techniques. Finally, we discuss the future direction of neurochemical sensors, including their ability to measure neurochemical concentrations and the potential for multiplex imaging.


Asunto(s)
Técnicas Biosensibles , Neurotransmisores , Animales , Humanos , Neurotransmisores/análisis , Neurotransmisores/metabolismo , Encéfalo/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/análisis
12.
Analyst ; 149(8): 2328-2337, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488040

RESUMEN

Monitoring the concentration fluctuations of neurotransmitters in vivo is valuable for elucidating the chemical signals that underlie brain functions. Microdialysis sampling is a widely used tool for monitoring neurochemicals in vivo. The volume requirements of most techniques that have been coupled to microdialysis, such as HPLC, result in fraction collection times of minutes, thus limiting the temporal resolution possible. Further the time of analysis can become long for cases where many fractions are collected. Previously we have used direct analysis of dialysate by low-flow electrospray ionization-tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole mass spectrometer to monitor acetylcholine, glutamate, and γ-amino-butyric acid to achieve multiplexed in vivo monitoring with temporal resolution of seconds. Here, we have expanded this approach to adenosine, dopamine, and serotonin. The method achieved limits of detection down to 2 nM, enabling basal concentrations of all these compounds, except serotonin, to be measured in vivo. Comparative analysis with LC-MS/MS showed accurate results for all compounds except for glutamate, possibly due to interference for this compound in vivo. Pairing this analysis with droplet microfluidics yields 11 s temporal resolution and can generate dialysate fractions down to 3 nL at rates up to 3 fractions per s from a microdialysis probe. The system is applied to multiplexed monitoring of neurotransmitter dynamics in response to stimulation by 100 mM K+ and amphetamine. These applications demonstrate the suitability of the droplet ESI-MS/MS method for monitoring short-term dynamics of up to six neurotransmitters simultaneously.


Asunto(s)
Microfluídica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Microdiálisis/métodos , Serotonina , Ácido Glutámico , Neurotransmisores/análisis , Soluciones para Diálisis
13.
J Am Soc Mass Spectrom ; 35(4): 663-673, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38447073

RESUMEN

For the simultaneous determination of monoamine neurotransmitters (NTs) like dopamine, serotonin, noradrenaline, and epinephrine, and their metabolites (metanephrine, normetanephrine, 3-methoxytyramine, vanillylmandelic acid, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid), a robust liquid chromatography method coupled with tandem mass spectrometry (LC-MS/MS) was introduced as the analytical method. This analytical method proved to be accurate for the simultaneous measurement of the amounts of 11 NTs and their metabolites in biological samples. The method proved to be more efficient and better than the previously reported method in terms of precision, recovery, sample requirement, and extraction procedure. The reported method requires only 100 µL of blood and 200 µL of urine, and the extraction procedure requires acetonitrile precipitation, filtration, drying, and reconstitution in water. The separation of all analytes was performed on an C18 column (4.6 mm × 150 mm and 1.8 µm). A 10 min gradient elution program with a mobile phase consisting of phase A (0.2% formic acid in water) and phase B (methanol) was used. The positive ionization mode was used for the detection of all analytes in multiple reaction monitoring (MRM). The proposed method was validated with an internal standard and yielded lower limits of detection and quantification ranges of 0.0182-0.0797 ng/mL and 0.0553-0.2415 ng/mL, respectively, with a good linearity (R2) between 0.9959 and 0.9994. The recoveries ranged from 73.37% to 116.63% in blood and from 80.9% to 115.33% in urine. For the NTs and metabolites, the intra- and interday % CV were 0.24-9.36 and 0.85-9.67, respectively. The developed LC-MS/MS method was successfully used for the determination of trace amounts of endogenous compounds in human blood and urine samples.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Neurotransmisores/análisis , Agua , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida
14.
ACS Sens ; 9(3): 1372-1381, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38380643

RESUMEN

We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.


Asunto(s)
Carbono , Café , Carbono/química , Porosidad , Dopamina/análisis , Neurotransmisores/análisis
15.
ACS Sens ; 9(4): 1785-1798, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38384144

RESUMEN

Real-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate. The antifouling properties of this diamond sensor were strongly related to the grain size (i.e., nanocrystalline and microcrystalline) and surface terminations (i.e., oxygen and hydrogen terminals). Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond microsensor exhibited enhanced antifouling characteristics against protein adsorption, which was attributed to the formation of a strong hydration layer as a physical and energetic barrier that prevents protein adsorption on the surface. This finally allowed for in vivo monitoring of dopamine in rat brains upon potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors. Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond (O-NCBDD) microsensor exhibited ultrahydrophilic properties with a contact angle of 4.9°, which was prone to forming a strong hydration layer as a physical and energetic barrier to withstand the adsorption of proteins. The proposed O-NCBDD microsensor exhibited a high detection sensitivity of 5.14 µA µM-1 cm-2 and a low detection limit of 25.7 nM. This finally allowed for in vivo monitoring of dopamine with an average concentration of 1.3 µM in rat brains upon 2 µL of potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors.


Asunto(s)
Diamante , Dopamina , Dopamina/análisis , Dopamina/química , Animales , Diamante/química , Interacciones Hidrofóbicas e Hidrofílicas , Ratas , Incrustaciones Biológicas/prevención & control , Boro/química , Neurotransmisores/análisis , Técnicas Biosensibles/métodos , Adsorción , Simulación de Dinámica Molecular , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Masculino , Nanopartículas/química
16.
Clin Chim Acta ; 552: 117650, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956824

RESUMEN

Schizophrenia is a serious mental disease with unknown etiology that affects approximately 1 % of the population around the world. Altered levels of amino acid neurotransmitters may underlie the physiopathology of schizophrenia (SZ). This study aimed to develop a rapid and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of glutamate acid (Glu), aspartic acid (Asp), γ-aminobutyric acid (GABA), glycine acid (Gly), and Taurine acid (Tau) in patients with schizophrenia plasma and establish reference intervals for Chinese adult populations, and applied to patients with schizophrenia for a preliminary exploration of changes in their plasma levels of five amino acid neurotransmitters. Sample treatment involved protein precipitation followed by dansyl chloride (DNS-Cl) derivatization and total run time is 5.8 min. The method was validated according to the latest national and international guidelines, which achieved acceptable precision (0.54-14.54 %) and accuracy (97.06-103.82 %). The reference interval for Glu, Asp, Gly, Tau, and GABA were 55.51-189.06, 27.51-92.38, 204.01-574.55, 107.50-227.65, and <1 µmol/L, respectively. Increased Tau levels and decreased Asp and Glu levels were shown in patients with schizophrenia. This method was suitable for clinical routine detection of plasma 5 amino acid neurotransmitters in Chinese adult populations.


Asunto(s)
Aminoácidos , Esquizofrenia , Adulto , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Esquizofrenia/diagnóstico , Neurotransmisores/análisis , Neurotransmisores/química , Ácido gamma-Aminobutírico/análisis , Glicina , China , Cromatografía Líquida de Alta Presión/métodos
17.
Anal Chem ; 95(45): 16549-16557, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906039

RESUMEN

Neurotransmitters (NTs) and neuromodulators (NMs) are two of the most important neurochemicals in the brain, and their imbalances in specific brain regions are thought to underlie certain neurological disorders. We present an on-tissue chemoselective derivatization mass spectrometry imaging (OTCD-MSI) method for the simultaneous mapping of NTs and NMs. Our derivatization system consists of a pyridiniumyl-benzylboronic acid based derivatization reagent and pyrylium salt, which facilitate covalent charge labeling of molecules containing cis-diol and primary amino, respectively. These derivatization systems improved the detection sensitivity of matrix-assisted laser desorption/ionization (MALDI)-MSI and simplified the identification of amino NTs and nucleoside NMs by the innate chemoselectivity of derivatization reagents and the unique isotopic pattern of boron-derivative reagents. We demonstrated the ability of the developed method on brain sections from a hypoxia mouse model and control. The simultaneous imaging of NTs and NMs provided a method for exploring how hypoxic stress and drugs affect specific brain regions through neurotransmitter modulation.


Asunto(s)
Encéfalo , Nucleósidos , Ratones , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neurotransmisores/análisis , Modelos Animales de Enfermedad
18.
Clin Chim Acta ; 548: 117453, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433402

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) monoamine neurotransmitters, their precursors and metabolites are essential biomarkers in the diagnosis and follow-up of monoamine neurotransmitter disorders (MNDs). However, their extra low concentrations and potential instability challenge the detection method. Here, we present a method that enables simultaneous quantification of these biomarkers. METHOD: With propyl chloroformate /n-propanol, 16 biomarkers in 50 µL of CSF were derivatized in situ within seconds under an ambient temperature. The derivatives were extracted by ethyl acetate and separated by a reverse phase column followed by mass spectrometric detection. The method was fully validated. Optimal conditions for standard solution preparation and storage, as well as CSF sample handling, were investigated. CSF samples from 200 controls and 16 patients were analyzed. RESULTS: The derivatization reaction stabilized biomarkers and increased sensitivity. Most biomarkers were quantifiable in concentrations between 0.02 and 0.50 nmol/L that were sufficient to measure their endogenous concentrations. The intra- and inter-day imprecision were < 15% for most analytes, and accuracy ranged from 90.3% to 111.6%. The stability study showed that standard stock solutions were stable at -80 °C for six years when prepared in the protection solutions; Analytes in CSF samples were stable for 24 h on wet ice and at least two years at -80 °C; But repeated freeze-thaw should be avoided. With this method, age-dependent reference intervals for each biomarker in the pediatric population were established. Patients with MNDs were successfully identified. CONCLUSION: The developed method is valuable for MNDs diagnosis and research, benefiting from its advantages of sensitivity, comprehensiveness, and high throughput.


Asunto(s)
Aminas , Espectrometría de Masas en Tándem , Niño , Humanos , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Neurotransmisores/análisis , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos
19.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241898

RESUMEN

Tetrodotoxin (TTX) inhibits neurotransmission in animals, and there is no specific antidote. In clinical practice in China, Althaea rosea (A. rosea flower) extract has been used to treat TTX poisoning. In this work, the efficacy of the ethyl acetate fraction extract of A. rosea flower in treating TTX poisoning in rats was investigated. A high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to determine nine neurotransmitters in rat brain tissue, including γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), noradrenaline (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-3-acetic acid (5-HIAA), epinephrine (E), and tyramine (Tyn). The detoxifying effect of A. rosea flower was verified by comparing the changes in neurotransmitters' content in brain tissue before and after poisoning in rats. The assay was performed in multiple reaction monitoring mode. The quantification method was performed by plotting an internal-standard working curve with good linearity (R2 > 0.9941) and sensitivity. Analyte recoveries were 94.04-107.53% (RSD < 4.21%). Results indicated that the levels of 5-HT, DA, E, and NE in the brains of TTX-intoxicated rats decreased, whereas the levels of GABA, Tyn, and 5-HIAA showed an opposite trend, and HVA and DOPAC were not detected. The levels of all seven neurotransmitters returned to normal after the gavage administration of ethyl acetate extract of A. rosea flower to prove that the ethyl acetate extract of A. rosea flower had a therapeutic effect on TTX poisoning. The work provided new ideas for studies on TTX detoxification.


Asunto(s)
Althaea , Espectrometría de Masas en Tándem , Ratas , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Tetrodotoxina/análisis , Serotonina , Ácido 3,4-Dihidroxifenilacético , Ácido Hidroxiindolacético , Neurotransmisores/análisis , Dopamina/análisis , Norepinefrina , Ácido gamma-Aminobutírico , Ácido Homovanílico , Flores/química
20.
ACS Appl Mater Interfaces ; 15(1): 138-157, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35394736

RESUMEN

Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.


Asunto(s)
Encéfalo , Neurotransmisores , Animales , Neurotransmisores/análisis , Neuronas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...