Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.050
Filtrar
1.
Curr Top Dev Biol ; 158: 151-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670704

RESUMEN

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Asunto(s)
Homeostasis , Músculo Esquelético , Regeneración , Nicho de Células Madre , Regeneración/fisiología , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Animales , Nicho de Células Madre/fisiología , Células Madre/citología , Células Madre/fisiología , Células Madre/metabolismo
2.
Curr Top Dev Biol ; 158: 179-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670705

RESUMEN

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Asunto(s)
Microambiente Celular , Matriz Extracelular , Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Animales , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Adaptación Fisiológica , Nicho de Células Madre/fisiología , Regeneración/fisiología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Células Madre/citología , Células Madre/fisiología
3.
Curr Top Dev Biol ; 158: 203-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670706

RESUMEN

Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.


Asunto(s)
Comunicación Celular , Músculo Esquelético , Nicho de Células Madre , Animales , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Humanos , Nicho de Células Madre/fisiología , Regeneración/fisiología , Desarrollo de Músculos , Diferenciación Celular
4.
EMBO J ; 43(8): 1570-1590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499787

RESUMEN

Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.


Asunto(s)
Dioxigenasas , Proteínas de Drosophila , Drosophila melanogaster , Animales , Femenino , Humanos , Diferenciación Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Dioxigenasas/metabolismo
5.
Glia ; 72(7): 1273-1289, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515286

RESUMEN

Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.


Asunto(s)
Hipocampo , Microglía , Neurogénesis , Tamoxifeno , Animales , Tamoxifeno/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Masculino , Ratones Transgénicos , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología
6.
Stem Cell Reports ; 19(4): 486-500, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38458190

RESUMEN

Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis. Here, we further characterize OM and identify megakaryocyte-induced mediators that augment the role of OM in the niche. Single-cell mRNA-seq, mass spectrometry, and CyTOF examination of megakaryocyte-stimulated OM suggested that upregulation of CD166 and Embigin on OM augment their hematopoiesis maintenance function. CD166 knockout OM or shRNA-Embigin knockdown OM confirmed that the loss of these molecules significantly reduced the ability of OM to augment the osteoblast-mediated hematopoietic-enhancing activity. Recombinant CD166 and Embigin partially substituted for OM function, characterizing both proteins as critical mediators of OM hematopoietic function. Our data identify Embigin and CD166 as OM-regulated critical components of HSC function in the niche and potential participants in various in vitro manipulations of stem cells.


Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Animales , Ratones , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Osteoblastos/metabolismo , Nicho de Células Madre/fisiología , Regulación hacia Arriba , Molécula de Adhesión Celular del Leucocito Activado/metabolismo
7.
Cytokine Growth Factor Rev ; 76: 22-29, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38472041

RESUMEN

The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.


Asunto(s)
Médula Ósea , Semaforinas , Humanos , Diferenciación Celular/fisiología , Semaforinas/metabolismo , Nicho de Células Madre/fisiología , Células Madre Hematopoyéticas , Hematopoyesis/fisiología , Células de la Médula Ósea
8.
Nat Commun ; 15(1): 1166, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326318

RESUMEN

Drosophila male germline stem cells (GSCs) reside at the tip of the testis and surround a cluster of niche cells. Decapentaplegic (Dpp) is one of the well-established ligands and has a major role in maintaining stem cells located in close proximity. However, the existence and the role of the diffusible fraction of Dpp outside of the niche have been unclear. Here, using genetically-encoded nanobodies called Morphotraps, we physically block Dpp diffusion without interfering with niche-stem cell signaling and find that a diffusible fraction of Dpp is required to ensure differentiation of GSC daughter cells, opposite of its role in maintenance of GSC in the niche. Our work provides an example in which a soluble niche ligand induces opposed cellular responses in stem cells versus in differentiating descendants to ensure spatial control of the niche. This may be a common mechanism to regulate tissue homeostasis.


Asunto(s)
Proteínas de Drosophila , Animales , Masculino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ligandos , Diferenciación Celular/fisiología , Drosophila/metabolismo , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo
9.
PLoS Biol ; 21(11): e3002352, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943883

RESUMEN

Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.


Asunto(s)
Drosophila , Células-Madre Neurales , Animales , Neuronas/metabolismo , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo , Neuroglía/fisiología , Encéfalo , Nicho de Células Madre/fisiología
10.
Rinsho Ketsueki ; 64(9): 861-868, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37793859

RESUMEN

Hematopoietic stem and progenitor cells in mammals primarily reside in the bone marrow after birth. There, the cellular dynamics and subsequent fate of those cells are regulated by the adjacent microenvironment, known as the niche, to sustain lifelong blood cell production. To analyze and study physiological hematopoiesis and various hematopoietic disorders, it is essential to deeply understand how the niche regulates hematopoiesis and how niche dysregulation occurs. However, the dynamics of hematopoietic stem and progenitor cells and their interactions with the niche are dynamic and complex, and our knowledge of the spatial organization of bone marrow cells and niche factors is still limited. In this review, I provide an overview of classical techniques for spatiotemporal understanding of the cellular communities in bone marrow, as well as recent advances in bone marrow imaging techniques and valuable animal models, and discuss future prospects in this field.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Médula Ósea/diagnóstico por imagen , Nicho de Células Madre/fisiología , Células de la Médula Ósea , Hematopoyesis/fisiología , Mamíferos
11.
Cell Biol Int ; 47(10): 1667-1683, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37554060

RESUMEN

Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia , Humanos , Nicho de Células Madre/fisiología , Médula Ósea , Células Madre Hematopoyéticas , Microambiente Tumoral
12.
Stem Cells ; 41(10): 944-957, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37465968

RESUMEN

Signal transducer and activator of transcription 5 (STAT5a and STAT5b) are intrinsically critical for normal hematopoiesis but are also expressed in stromal cells. Here, STAT5ab knockout (KO) was generated with a variety of bone marrow hematopoietic and stromal Cre transgenic mouse strains. Vav1-Cre/+STAT5abfl/fl, the positive control for loss of multipotent hematopoietic function, surprisingly dysregulated niche factor mRNA expression, and deleted STAT5ab in CD45neg cells. Single-cell transcriptome analysis of bone marrow from Vav1-Cre/+ wild-type or Vav1-Cre/+STAT5abfl/fl mice showed hematopoietic stem cell (HSC) myeloid commitment priming. Nes+ cells were detected in both CD45neg and CD45+ clusters and deletion of STAT5ab with Nes-Cre caused hematopoietic repopulating defects. To follow up on these promiscuous Cre promoter deletions in CD45neg and CD45+ bone marrow cell populations, more stroma-specific Cre strains were generated and demonstrated a reduction in multipotent hematopoietic progenitors. Functional support for niche-supporting activity was assessed using STAT5-deficient mesenchymal stem cells (MSCs). With Lepr-Cre/+STAT5abfl/fl, niche factor mRNAs were downregulated with validation of reduced IGF-1 and CXCL12 proteins. Furthermore, advanced computational analyses revealed a key role for STAT5ab/Cish balance with Cish strongly co-expressed in MSCs and HSCs primed for differentiation. Therefore, STAT5ab-associated gene regulation supports the bone marrow microenvironment.


Asunto(s)
Hematopoyesis , Factor de Transcripción STAT5 , Ratones , Animales , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Ratones Noqueados , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Ratones Transgénicos , Nicho de Células Madre/fisiología
13.
Methods Mol Biol ; 2677: 113-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464238

RESUMEN

Live imaging of adult tissue stem cell niches provides key insights into the dynamic behavior of stem cells, their differentiating progeny, and their neighboring support cells, but few niches are amenable to this approach. Here, we discuss a technique for long-term live imaging of the Drosophila testis stem cell niche. Culturing whole testes ex vivo for up to 18 h allows for tracking of cell-type-specific behaviors under normal and various chemically or genetically modified conditions. Fixing and staining tissues after live imaging allows for the molecular confirmation of cell identity and behavior. By using live imaging in intact niches, we can better uncover the cellular and molecular mechanisms that regulate stem cell function in vivo.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Testículo , Nicho de Células Madre/fisiología , Células Madre , Drosophila melanogaster
14.
J Vis Exp ; (196)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37335124

RESUMEN

Skeletal muscle is the largest tissue of the body and performs multiple functions, from locomotion to body temperature control. Its functionality and recovery from injuries depend on a multitude of cell types and on molecular signals between the core muscle cells (myofibers, muscle stem cells) and their niche. Most experimental settings do not preserve this complex physiological microenvironment, and neither do they allow the ex vivo study of muscle stem cells in quiescence, a cell state that is crucial for them. Here, a protocol is outlined for the ex vivo culture of muscle stem cells with cellular components of their niche. Through the mechanical and enzymatic breakdown of muscles, a mixture of cell types is obtained, which is put in 2D culture. Immunostaining shows that within 1 week, multiple niche cells are present in culture alongside myofibers and, importantly, Pax7-positive cells that display the characteristics of quiescent muscle stem cells. These unique properties make this protocol a powerful tool for cell amplification and the generation of quiescent-like stem cells that can be used to address fundamental and translational questions.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Ratones , Animales , Diferenciación Celular , División Celular , Células Madre , Nicho de Células Madre/fisiología
15.
Aging Cell ; 22(8): e13889, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37226323

RESUMEN

The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as "nonhematopoietic" sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Ratones , Animales , Células Endoteliales , Nicho de Células Madre/fisiología , Células Madre Hematopoyéticas , Células de la Médula Ósea , Hematopoyesis/fisiología
16.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102706

RESUMEN

The cells of the innate immune system are the sentinels of tissue homeostasis, acting as 'first responders' to cellular damage and infection. Although the complex interplay of different immune cells during the initial inflammatory phases of infection and repair has been documented over many decades, recent studies have begun to define a more direct role for specific immune cells in the modulation of tissue repair. One particular cell of the innate immune system, the macrophage, has emerged as a central integrator of the complex molecular processes that drive tissue repair and, in some cases, the development of specific cell types. Although macrophages display directed orchestration of stem cell activities, bidirectional cellular crosstalk mechanisms allow stem cells to regulate macrophage behaviour within their niche, thus increasing the complexity of niche regulation and control. In this Review, we characterize the roles of macrophage subtypes in individual regenerative and developmental processes and illustrate the surprisingly direct role for immune cells in coordinating stem cell formation and activation.


Asunto(s)
Macrófagos , Nicho de Células Madre , Nicho de Células Madre/fisiología , Macrófagos/metabolismo , Células Madre
18.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876630

RESUMEN

Hematopoiesis is regulated by the bone marrow (BM) stroma. However, cellular identities and functions of the different BM stromal elements in humans remain poorly defined. Based on single-cell RNA sequencing (scRNAseq), we systematically characterized the human non-hematopoietic BM stromal compartment and we investigated stromal cell regulation principles based on the RNA velocity analysis using scVelo and studied the interactions between the human BM stromal cells and hematopoietic cells based on ligand-receptor (LR) expression using CellPhoneDB. scRNAseq led to the identification of six transcriptionally and functionally distinct stromal cell populations. Stromal cell differentiation hierarchy was recapitulated based on RNA velocity analysis and in vitro proliferation capacities and differentiation potentials. Potential key factors that might govern the transition from stem and progenitor cells to fate-committed cells were identified. In situ localization analysis demonstrated that different stromal cells were localized in different niches in the bone marrow. In silico cell-cell communication analysis further predicted that different stromal cell types might regulate hematopoiesis through distinct mechanisms. These findings provide the basis for a comprehensive understanding of the cellular complexity of the human BM microenvironment and the intricate stroma-hematopoiesis crosstalk mechanisms, thus refining our current view on human hematopoietic niche organization.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Humanos , Médula Ósea/fisiología , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/fisiología , Células de la Médula Ósea/metabolismo , Hematopoyesis/genética , Análisis de Secuencia de ARN , ARN/metabolismo
19.
Dev Dyn ; 252(6): 728-741, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866634

RESUMEN

BACKGROUND: Maintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. RESULTS: Here, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. CONCLUSIONS: These results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.


Asunto(s)
Proteínas de Drosophila , Quinasas Janus , Animales , Quinasas Janus/genética , Quinasas Janus/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Drosophila/genética , Células Germinativas/metabolismo , Homólogo de la Proteína Chromobox 5 , Células Madre , Drosophila melanogaster/genética , Nicho de Células Madre/fisiología
20.
Dev Cell ; 58(7): 550-564.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36924771

RESUMEN

Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.


Asunto(s)
Intestinos , Nicho de Células Madre , Humanos , Ratones , Animales , Nicho de Células Madre/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular , Proteínas Morfogenéticas Óseas/metabolismo , Músculo Liso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA