Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 932
Filtrar
1.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891084

RESUMEN

Mutations in p53 and KRAS are seen in most cases of colon cancer. The impact of these mutations on signaling pathways related to cancer growth has been studied in depth, but relatively less is known on their effects on amino acid transporters in cancer cells. This represents a significant knowledge gap because amino acid nutrition in cancer cells profoundly influences macropinocytosis and ferroptosis, two processes with opposing effects on tumor growth. Here, we used isogenic colon cancer cell lines to investigate the effects of p53 deletion and KRAS activation on two amino acid transporters relevant to macropinocytosis (SLC38A5) and ferroptosis (SLC7A11). Our studies show that the predominant effect of p53 deletion is to induce SLC7A11 with the resultant potentiation of antioxidant machinery and protection of cancer cells from ferroptosis, whereas KRAS activation induces not only SLC7A11 but also SLC38A5, thus offering protection from ferroptosis as well as improving amino acid nutrition in cancer cells via accelerated macropinocytosis. Niclosamide, an FDA-approved anti-helminthic, blocks the functions of SLC7A11 and SLC38A5, thus inducing ferroptosis and suppressing macropinocytosis, with the resultant effective reversal of tumor-promoting actions of oncogenic changes in p53 and KRAS. These findings underscore the potential of this drug in colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Niclosamida , Pinocitosis , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Humanos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Pinocitosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Niclosamida/farmacología , Niclosamida/uso terapéutico , Antineoplásicos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Mutación/genética
2.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892165

RESUMEN

Human mycoses cover a diverse field of fungal diseases from skin disorders to systemic invasive infections and pose an increasing global health problem based on ineffective treatment options, the hampered development of new efficient drugs, and the emergence of resistant fungal strains. Niclosamide is currently applied for the treatment of worm infections. Its mechanisms of action, which include the suppression of mitochondrial oxidative phosphorylation (also known as mitochondrial uncoupling), among others, has led to a repurposing of this promising anthelmintic drug for the therapy of further human diseases such as cancer, diabetes, and microbial infections. Given the urgent need to develop new drugs against fungal infections, the considerable antifungal properties of niclosamide are highlighted in this review. Its chemical and pharmacological properties relevant for drug development are also briefly mentioned, and the described mitochondria-targeting mechanisms of action add to the current arsenal of approved antifungal drugs. In addition, the activities of further salicylanilide-based niclosamide analogs against fungal pathogens, including agents applied in veterinary medicine for many years, are described and discussed for their feasibility as new antifungals for humans. Preliminary structure-activity relationships are determined and discussed. Various salicylanilide derivatives with antifungal activities showed increased oral bioavailabilities when compared with niclosamide. The simple synthesis of salicylanilide-based drugs also vouchsafes a broad and cost-effective availability for poorer patient groups. Pertinent literature is covered until 2024.


Asunto(s)
Antifúngicos , Niclosamida , Salicilanilidas , Niclosamida/farmacología , Salicilanilidas/farmacología , Salicilanilidas/química , Antifúngicos/farmacología , Antifúngicos/química , Humanos , Animales , Relación Estructura-Actividad , Hongos/efectos de los fármacos , Micosis/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
Clin Transl Sci ; 17(5): e13833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38797873

RESUMEN

Niclosamide, a potent anthelmintic agent, has emerged as a candidate against COVID-19 in recent studies. Its formulation has been investigated extensively to address challenges related to systemic exposure. In this study, niclosamide was formulated as a long-acting intramuscular injection to achieve systemic exposure in the lungs for combating the virus. To establish the dose-exposure relationship, a hamster model was selected, given its utility in previous COVID-19 infection studies. Pharmacokinetic (PK) analysis was performed using NONMEM and PsN. Hamsters were administered doses of 55, 96, 128, and 240 mg/kg with each group comprising five animals. Two types of PK models were developed, linear models incorporating partition coefficients and power-law distributed models, to characterize the relationship between drug concentrations in the plasma and lungs of the hamsters. Numerical and visual diagnostics, including basic goodness-of-fit and visual predictive checks, were employed to assess the models. The power-law-based PK model not only demonstrated superior numerical performance compared with the linear model but also exhibited better agreement in visual diagnostic evaluations. This phenomenon was attributed to the nonlinear relationship between drug concentrations in the plasma and lungs, reflecting kinetic heterogeneity. Dose optimization, based on predicting lung exposure, was conducted iteratively across different drug doses, with the minimum effective dose estimated to be ~1115 mg/kg. The development of a power-law-based PK model proved successful and effectively captured the nonlinearities observed in this study. This method is expected to be applicable for investigating the drug disposition of specific formulations in the lungs.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Pulmón , Modelos Biológicos , Niclosamida , Animales , Niclosamida/farmacocinética , Niclosamida/administración & dosificación , Antivirales/farmacocinética , Antivirales/administración & dosificación , Pulmón/metabolismo , Inyecciones Intramusculares , SARS-CoV-2 , Cricetinae , Relación Dosis-Respuesta a Droga , Masculino , COVID-19
4.
J Gen Physiol ; 156(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38814250

RESUMEN

The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease (COPD) but was recently found to possess broad-spectrum off-target effects. Here, we show that, under physiological Ca2+ (200-500 nM) and voltages, niclosamide acutely potentiates TMEM16A. Our computational and functional characterizations pinpoint a putative niclosamide binding site on the extracellular side of TMEM16A. Mutations in this site attenuate the potentiation. Moreover, niclosamide potentiates endogenous TMEM16A in vascular smooth muscle cells, triggers intracellular calcium increase, and constricts the murine mesenteric artery. Our findings advise caution when considering clinical applications of niclosamide as a TMEM16A inhibitor. The identification of the putative niclosamide binding site provides insights into the mechanism of TMEM16A pharmacological modulation and provides insights into developing specific TMEM16A modulators to treat human diseases.


Asunto(s)
Anoctamina-1 , Niclosamida , Vasoconstricción , Niclosamida/farmacología , Anoctamina-1/metabolismo , Anoctamina-1/genética , Animales , Ratones , Humanos , Vasoconstricción/efectos de los fármacos , Células HEK293 , Sitios de Unión , Calcio/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Masculino
5.
J Infect Public Health ; 17(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569269

RESUMEN

BACKGROUND: The efficacy of the viral clearance and clinical outcomes of favipiravir (FPV) in outpatients being treated for coronavirus disease 2019 (COVID-19) is unclear. Ivermectin (IVM), niclosamide (NCL), and FPV demonstrated synergistic effects in vitro for exceed 78% inhibiting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) replication. METHODS: A phase 2, open-label, 1:1, randomized, controlled trial was conducted on Thai patients with mild-to-moderate COVID-19 who received either combination FPV/IVM/NCL therapy or FPV alone to assess the rate of viral clearance among individuals with mild-to-moderate COVID-19. RESULTS: Sixty non-high-risk comorbid patients with mild-to-moderate COVID-19 were randomized; 30 received FPV/IVM/NCL, and 30 received FPV alone. Mixed-effects multiple linear regression analysis of the cycle threshold value from SARS-CoV-2 PCR demonstrated no statistically significant differences in viral clearance rates between the combined FPV/IVM/NCL therapy group and the FPV-alone group. World Health Organization Clinical Progression scores and symptomatic improvement did not differ between arms on days 3, 6, and 10, and no adverse events were reported. No patients required hospitalization, intensive care unit admission, or supplemental oxygen or died within 28 days. C-reactive protein on day 3 was lower in the FPV/IVM/NCL group. CONCLUSION: Viral clearance rates did not differ significantly between the FPV/IVM/NCL combination therapy and FPV-alone groups of individuals with mild-to-moderate COVID-19, although the combined regimen demonstrated a synergistic effect in vitro. No discernible clinical benefit was observed. Further research is required to explore the potential benefits of FVP beyond its antiviral effects. TRIAL REGISTRATION: TCTR20230403007, Registered 3 April 2023 - Retrospectively registered,https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20230403007.


Asunto(s)
Amidas , COVID-19 , Pirazinas , Adulto , Humanos , SARS-CoV-2 , Ivermectina/uso terapéutico , Niclosamida , Aceleración , Resultado del Tratamiento , Antivirales/efectos adversos
6.
Int J Nanomedicine ; 19: 2639-2653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500681

RESUMEN

Introduction: We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS). Methods: Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control. Results: Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice. Conclusion: We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Niclosamida/farmacología , Niclosamida/uso terapéutico , Xenoinjertos , Neoplasias Hepáticas/patología , Emulsiones/química , Sistemas de Liberación de Medicamentos , Solubilidad , Disponibilidad Biológica , Agua , Lípidos , Administración Oral
7.
Sci Rep ; 14(1): 7576, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555408

RESUMEN

In this study, we aimed to enhance and accelerate the electrochemical properties of a glassy carbon-based voltammetric sensor electrode. This was achieved through the modification of the electrode using a nanocomposite derived from a metal-organic framework, which was embedded onto a substrate consisting of metal oxide nanoparticles. The final product was an electrocatalyst denoted as NiO/Ni@C-Fe3O4/CeO2, tailored for the detection of the drug niclosamide. Several techniques, including FT-IR, XRD, XPS, FE-SEM, TEM, and EDS, were employed to characterize the structure and morphology of this newly formed electroactive catalyst. Subsequently, the efficiency of this electrocatalyst was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. Differential pulse voltammetry was also utilized to achieve heightened sensitivity and selectivity. A comprehensive exploration of key factors such as the catalyst quantity, optimal instrumental parameters, scan rate influence, and pH effect was undertaken, revealing a well-regulated reaction process. Furthermore, the sensor's analytical performance parameters were determined. This included establishing the linear detection range for the target compound within a specified concentration interval of 2.92 nM to 4.97 µM. The detection limit of 0.91 nM, repeatability of 3.1%, and reproducibility of 4.8% of the sensor were calculated, leading to the observation of favorable stability characteristics. Conclusively, the developed electrochemical sensor was successfully employed for the quantification of niclosamide in urine samples and niclosamide tablets. This application highlighted not only the sensor's high selectivity but also the satisfactory and accurate outcomes obtained from these measurements.


Asunto(s)
Nanopartículas del Metal , Niclosamida , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Carbono/química , Óxidos , Técnicas Electroquímicas/métodos , Electrodos
8.
Tuberculosis (Edinb) ; 146: 102500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432118

RESUMEN

Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 µM; M. abscessus IC90 59.1 µM) and tribromsalan (M. tuberculosis IC90 76.92 µM; M. abscessus IC90 147.4 µM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Salicilanilidas , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Niclosamida/farmacología , Reposicionamiento de Medicamentos , Micobacterias no Tuberculosas/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
9.
Biomed Pharmacother ; 173: 116394, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461686

RESUMEN

Recently, anthelmintics have showcased versatile therapeutic potential in addressing various diseases, positioning them as promising candidates for drug repurposing. However, challenges such as low bioavailability and a lack of a solid pharmacokinetic basis impede successful repurposing. To overcome these flaws, we aimed to investigate the key pharmacokinetic factors of anthelmintics mainly focusing on the absorption, distribution, and metabolism profiles by employing niclosamide (NIC) as a model drug. The intestinal permeability of NIC is significantly influenced by solubility and doesn't function as a substrate for efflux transporters. It showed high plasma protein binding. Also, the metabolism study indicated that NIC would have low metabolic stability by extensively undergoing the intestinal glucuronidation. Additionally, we investigated the CYP-mediated drug-drug interaction potential of NIC in both direct and time-dependent ways. NIC showed strong inhibitory effects on CYP1A2 and CYP2C8 and is not likely to become a time-dependent inhibitor. Our findings could contribute to the identification of essential factors in the pharmacokinetics of anthelmintics, potentially facilitating their repositioning.


Asunto(s)
Antihelmínticos , Niclosamida , Niclosamida/farmacología , Niclosamida/uso terapéutico , Reposicionamiento de Medicamentos , Antihelmínticos/farmacología , Disponibilidad Biológica , Solubilidad
10.
Neurotherapeutics ; 21(3): e00346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493058

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Fármacos Neuroprotectores , Niclosamida , Niclosamida/farmacología , Niclosamida/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Masculino , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Humanos , Inflamación/tratamiento farmacológico
11.
Braz J Microbiol ; 55(2): 1359-1368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38466550

RESUMEN

The drugs available to treat sporotrichosis, an important yet neglected fungal infection, are limited. Some Sporothrix spp. strains present reduced susceptibility to these antifungals. Furthermore, some patients may not be indicated to use these drugs, while others may not respond to the therapy. The anthelmintic drug niclosamide is fungicidal against the Sporothrix brasiliensis type strain. This study aimed to evaluate whether niclosamide also has antifungal activity against Sporothrix globosa, Sporothrix schenckii and other S. brasiliensis strains with distinct genotypes and antifungal susceptibility status. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined using the microdilution method according to the CLSI protocol. The checkerboard method was employed to evaluate niclosamide synergism with drugs used in sporotrichosis treatment. Metabolic activity of the strains under niclosamide treatment was evaluated using the resazurin dye. Niclosamide was active against all S. brasiliensis strains (n = 17), but it was ineffective (MIC > 20 µM) for some strains (n = 4) of other pathogenic Sporothrix species. Niclosamide MIC values for Sporothrix spp. were similar for mycelial and yeast-like forms of the strains (P = 0.6604). Niclosamide was fungicidal (MFC/MIC ratio ≤ 2) for most strains studied (89%). Niclosamide activity against S. brasiliensis is independent of the fungal genotype or non-wild-type phenotypes for amphotericin B, itraconazole, or terbinafine. These antifungal drugs presented indifferent interactions with niclosamide. Niclosamide has demonstrated potential for repurposing as a treatment for sporotrichosis, particularly in S. brasiliensis cases, instigating in vivo studies to validate the in vitro findings.


Asunto(s)
Antihelmínticos , Antifúngicos , Pruebas de Sensibilidad Microbiana , Niclosamida , Sporothrix , Sporothrix/efectos de los fármacos , Sporothrix/genética , Sporothrix/clasificación , Niclosamida/farmacología , Antifúngicos/farmacología , Antihelmínticos/farmacología , Esporotricosis/microbiología , Esporotricosis/tratamiento farmacológico , Genotipo , Humanos , Farmacorresistencia Fúngica , Sinergismo Farmacológico
12.
Int Immunopharmacol ; 129: 111602, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38330800

RESUMEN

The phenotype of allergic diseases associated with Anisakis determines the pattern of cytokines related to antibody production. However, the role of serum IgA and the immunomodulatory mechanisms exerted by active infection of L3 or passive mucosal contact with A. simplex specific antigens has not been studied before. We measured serum cytokine by flow cytometry (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, IL-17A, TGF-ß1) and antibody levels (IgE, IgG4, IgA) by ELISA against total and excretory-secretory (ES) antigens, Ani s 3,and the group of major allergens Ani s 1, Ani s 7, and Ani s 13 in sera from 10 patients with gastro-allergic anisakiasis (GAA), 11 Anisakis sensitization associated chronic urticaria (CU+) as well as 17 non-Anisakis-sensitized patients with chronic urticaria (CU-), compared with the urticaria control group (18 subjects). Specific IgE, IgG4 and IgA were high in the GAA, but IgA levels were significantly higher in the CU+ with respect the CONTROL group. We observed higher levels of the ratio IgA/IgG4 in CU+ than GAA group for Ani s 1, Ani s 7, Ani s 13 and ES. Furthermore, chronic urticaria (CU) patients showed significant lower levels of IL-10, IFN-γ and IL-17A than patients without CU. The anti-Ani s 13 IgA/IgG4 ratio correlated positively with pro-inflammatory cytokines and ratios (TNF-α, IL-17A, Th17/Th2, Type1/Type2 and TNF-α/IL-10) in CONTROL group. In general, Anti-Anisakis IgA/G4 ratio was high in CU patients. In conclusion, this study demonstrates the importance of serum IgA because it is associated with chronic urticaria independently of Anisakis sensitization.


Asunto(s)
Anisakiasis , Anisakis , Urticaria Crónica , Niclosamida/análogos & derivados , Urticaria , Animales , Humanos , Interleucina-10 , Interleucina-17 , Factor de Necrosis Tumoral alfa , Comprensión , Anisakiasis/complicaciones , Urticaria Crónica/complicaciones , Antígenos Helmínticos , Alérgenos , Citocinas , Inmunoglobulina G , Inmunoglobulina E , Inmunoglobulina A , Proteínas del Helminto
13.
Sci Total Environ ; 922: 171165, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38395171

RESUMEN

Despite the wide distribution and persistence of microplastics (MPs), their interactive effects with molluscicides are unknown. Schistosomiasis, a neglected tropical disease, affects 236.6 million people worldwide. Niclosamide (NCL) is the only molluscicide recommended by the World Health Organization (WHO) and it is used to control the population of Schistosoma spp.'s intermediate host. Thus, this study aimed to evaluate of the interaction between polyethylene (PE) MPs and NCL, and their associated toxicity in the freshwater snail Biomphalaria glabrata (Say 1818). Weathered PE MPs were characterized and theoretical analysis of NCL-MP adsorption nature was made using quantum mechanical calculations. The toxicity of NCL isolated (0.0265 to 0.0809 mg L-1) and under interaction with PE MPs (3400 µg L-1) in B. glabrata embryos and newly hatched snails was analyzed. In silico analysis confirmed the adsorption mechanisms of NCL into PE MPs. PE MPs decreased the NCL toxicity to both B. glabrata developmental stages, increasing their survival and NCL lethal concentrations, indicating concerns regarding NCL use as molluscicide in aquatic environments polluted by MPs. In conclusion, MPs may change the efficiency of chemicals used in snail control programs.


Asunto(s)
Moluscocidas , Niclosamida , Animales , Humanos , Niclosamida/toxicidad , Microplásticos , Plásticos/toxicidad , Caracoles , Moluscocidas/toxicidad
14.
Sci Rep ; 14(1): 1464, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233410

RESUMEN

The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.


Asunto(s)
Asma , Fibrosis Quística , Humanos , Ratones , Ratas , Animales , Niclosamida/farmacología , Benzbromarona/farmacología , Benzbromarona/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Anoctamina-1 , Moco , Intestinos
15.
ACS Appl Mater Interfaces ; 16(10): 12188-12201, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38288981

RESUMEN

Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.


Asunto(s)
Infarto del Miocardio , Factor de Transcripción STAT3 , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Niclosamida/metabolismo , Niclosamida/farmacología , Niclosamida/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Malonatos/metabolismo , Malonatos/farmacología , Malonatos/uso terapéutico , Apoptosis
16.
Chem Biol Interact ; 390: 110886, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280639

RESUMEN

Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 µM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Humanos , Ratas , Animales , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico , Niclosamida/farmacología , Interacciones Farmacológicas , Transportadores de Anión Orgánico/metabolismo , Células HEK293
17.
Toxicol Appl Pharmacol ; 483: 116804, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185387

RESUMEN

Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.


Asunto(s)
Factor de Crecimiento Epidérmico , Hidrocarburos Clorados , Placenta , Bifenilos Policlorados , Humanos , Femenino , Embarazo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Placenta/metabolismo , Niclosamida , Trofoblastos/metabolismo , Receptores ErbB/metabolismo , Movimiento Celular
18.
Metab Brain Dis ; 39(3): 387-401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37284987

RESUMEN

Autism Spectrum Disorders (ASD) are a complex set of neurodevelopmental manifestations which present in the form of social and communication deficits. Affecting a growing proportion of children worldwide, the exact pathogenesis of this disorder is not very well understood, and multiple signaling pathways have been implicated. Among them, the ERK/MAPK pathway is critical in a number of cellular processes, and the normal functioning of neuronal cells also depends on this cascade. As such, recent studies have increasingly focused on the impact this pathway has on the development of autistic symptoms. Improper ERK signaling is suspected to be involved in neurotoxicity, and the same might be implicated in autism spectrum disorders (ASD), through a variety of effects including mitochondrial dysfunction and oxidative stress. Niclosamide, an antihelminthic and anti-inflammatory agent, has shown potential in inhibiting this pathway, and countering the effects shown by its overactivity in inflammation. While it has previously been evaluated in other neurological disorders like Alzheimer's Disease and Parkinson's Disease, as well as various cancers by targeting ERK/MAPK, it's efficacy in autism has not yet been evaluated. In this article, we attempt to discuss the potential role of the ERK/MAPK pathway in the pathogenesis of ASD, specifically through mitochondrial damage, before moving to the therapeutic potential of niclosamide in the disorder, mediated by the inhibition of this pathway and its detrimental effects of neuronal development.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Enfermedades Mitocondriales , Niño , Humanos , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Niclosamida/farmacología , Niclosamida/uso terapéutico , Estrés Oxidativo
19.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979051

RESUMEN

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Asunto(s)
Asma , COVID-19 , Ratones , Animales , Anoctamina-1/metabolismo , Ivermectina/farmacología , Ivermectina/uso terapéutico , Niclosamida/farmacología , Niclosamida/uso terapéutico , Anoctaminas/metabolismo , Pulmón/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Calcio/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios , Canales de Cloruro/metabolismo
20.
J Drug Target ; 32(2): 186-199, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38133596

RESUMEN

Niclosamide (NCL) is repurposed to treat inflammatory bowel disease due to its anti-inflammatory properties and potential to reduce oxidative stress. This therapeutic activity remains challenging if administered directly due to its low solubility and high recrystallization tendency in gastric pH. Solid dispersions using pH-dependent polymer will be a better idea to improve the solubility, dissolution and targeted delivery at the colon. Hot melt extrusion was used to formulate a solid dispersion with 30% NCL utilising hydroxypropyl methylcellulose acetate succinate as a pH-dependent polymer. In vitro drug release studies revealed formulation (F1) containing 10%w/w Tween 80 showed minimal release (2.06%) at the end of 2 h, followed by 47.87% and 82.15% drug release at 6 h and 14 h, respectively, indicating the maximum amount of drug release in the colon. The drug release from the formulations containing no plasticiser and 5%w/w plasticiser was comparable to the pure crystalline drug (approximately 25%). Solid-state analysis confirmed particle conversion of crystalline NCL to amorphous form, and the optimised formulation was stable for 6 months without significant changes in dissolution profile. In contrast to pure NCL, the F1 formulation substantially reduced the disease activity index, colonic inflammation, histological alterations and oxidative damage in colitis mice. These findings reveal that the prepared formulation can potentially deliver the drug locally at the colon, making it an effective tool in treating ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Polímeros , Ratones , Animales , Composición de Medicamentos , Niclosamida/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Solubilidad , Preparaciones Farmacéuticas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA