Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 214: 108916, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002305

RESUMEN

Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation. Here, we identified NtCOP1, a COP1 homolog in Nicotiana tabacum, and demonstrated its ability to complement the cop1-4 mutant in Arabidopsis thaliana at molecular, morphological, and biochemical levels. Through the development of NtCOP1 overexpression (NtCOP1OX) plants, we observed a significant reduction in nicotine and flavonol content, inversely correlated with the down-regulation of nicotine and phenylpropanoid pathway. Conversely, CRISPR/Cas9-based knockout mutant plants (NtCOP1CR) exhibited an increase in nicotine levels. Further investigations, including yeast-two hybrid assays, grafting experiments, and Western blot analyses, revealed that NtCOP1 modulates nicotine biosynthesis by targeting NtHY5, thereby impeding its transport from shoot-to-root. We conclude that the interplay between HY5 and COP1 functions antagonistically in the light-dependent regulation of nicotine biosynthesis in tobacco.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Nicotina , Nicotiana/metabolismo , Nicotiana/genética , Nicotina/biosíntesis , Nicotina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1935-1949, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914502

RESUMEN

Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.


Asunto(s)
Nicotiana , Nicotiana/metabolismo , Nicotiana/genética , Biología Sintética , Plantas Modificadas Genéticamente/metabolismo , Ingeniería Metabólica/métodos , Técnicas de Cultivo de Célula/métodos , Nicotina/metabolismo , Nicotina/biosíntesis , Biomasa
3.
Plant Physiol ; 188(1): 151-166, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34601578

RESUMEN

MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.


Asunto(s)
Metiltransferasas/genética , Metiltransferasas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotina/biosíntesis , Nicotina/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
5.
Sci Rep ; 11(1): 21063, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702915

RESUMEN

Heterosis is a common biological phenomenon that can be used to optimize yield and quality of crops. Using heterosis breeding, hybrids with suitable nicotine content have been applied to tobacco leaf production. However, the molecular mechanism of the formation of nicotine heterosis has never been explained from the perspective of protein. The DIA proteomics technique was used to compare the differential proteomics of the hybrid Va116 × Basma, showing strong heterosis in nicotine content from its parent lines Va116 and Basma. Proteomics analysis indicated that 65.2% of DEPs showed over-dominant expression patterns, and these DEPs included QS, BBL, GS, ARAF and RFC1 which related to nicotine synthesis. In addition, some DEPs (including GST, ABCE2 and ABCF1 and SLY1) that may be associated with nicotinic transport exhibited significant heterosis over the parental lines. These findings demonstrated that the efficiency of the synthesis and transport of nicotine in hybrids was significantly higher than that in the parent lines, and the accumulation of over-dominant expression proteins may be the cause of heterosis of nicotinic content in hybrids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Vigor Híbrido , Nicotiana/metabolismo , Nicotina/biosíntesis , Proteínas de Plantas/biosíntesis , Proteómica , Nicotina/genética , Proteínas de Plantas/genética , Nicotiana/genética
6.
Plant Mol Biol ; 107(1-2): 21-36, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34302568

RESUMEN

KEY MESSAGE: NtARF6 overexpression represses nicotine biosynthesis in tobacco. Transcriptome analysis suggests that NtARF6 acts as a regulatory hub that connect different phytohormone signaling pathways to antagonize the jasmonic acid-induced nicotine biosynthesis. Plant specialized metabolic pathways are regulated by a plethora of molecular regulators that form complex networks. In Nicotiana tabacum, nicotine biosynthesis is regulated by transcriptional activators, such as NtMYC2 and the NIC2-locus ERFs. However, the underlying molecular mechanism of the regulatory feedback is largely unknown. Previous research has shown that NbARF1, a nicotine synthesis repressor, reduces nicotine accumulation in N. benthamiana. In this study, we demonstrated that overexpression of NtARF6, an ortholog of NbARF1, was able to reduce pyridine alkaloid accumulation in tobacco. We found that NtARF6 could not directly repress the transcriptional activities of the key nicotine pathway structural gene promoters. Transcriptomic analysis suggested that this NtARF6-induced deactivation of alkaloid biosynthesis might be achieved by the antagonistic effect between jasmonic acid (JA) and other plant hormone signaling pathways, such as ethylene (ETH), salicylic acid (SA), abscisic acid (ABA). The repression of JA biosynthesis is accompanied by the induction of ETH, ABA, and SA signaling and pathogenic infection defensive responses, resulting in counteracting JA-induced metabolic reprogramming and decreasing the expression of nicotine biosynthetic genes in vivo. This study provides transcriptomic evidence for the regulatory mechanism of the NtARF6-mediated repression of alkaloid biosynthesis and indicates that this ARF transcription factor might act as a regulatory hub to connect different hormone signaling pathways in tobacco.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotina/biosíntesis , Proteínas de Plantas/genética , Alcaloides/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Análisis por Conglomerados , Ontología de Genes , Genes Reguladores , Genoma de Planta , Especificidad de Órganos/genética , Filogenia , Células Vegetales/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Transcriptoma/genética
7.
J Exp Bot ; 72(5): 1661-1676, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33258946

RESUMEN

Protein phosphatases (PPs) and protein kinases (PKs) regulate numerous developmental, defense, and phytohormone signaling processes in plants. However, the underlying regulatory mechanism governing biosynthesis of specialized metabolites, such as alkaloids, by the combined effects of PPs and PKs, is insufficiently understood. Here, we report the characterization of a group B protein phosphatase type 2C, NtPP2C2b, that likely acts upstream of the NICOTINE2 locus APETALA 2/Ethylene Response Factors (AP2/ERFs), to regulate nicotine biosynthesis in tobacco. Similar to the nicotine pathway genes, NtPP2C2b is highly expressed in roots and induced by jasmonic acid (JA). Overexpression of NtPP2C2b in transgenic hairy roots or stable transgenic tobacco plants repressed nicotine pathway gene expression and reduced nicotine accumulation. Additionally, transient overexpression of NtPP2C2b, together with the NtERF221, repressed transactivation of the quinolinate phosphoribosyltransferase promoter in tobacco cells. We further demonstrate that the JA-responsive tobacco mitogen-activated protein kinase (MAPK) 4 interacts with NtPP2C2b in yeast and plant cells. Conditional overexpression of NtMPK4 in tobacco hairy roots up-regulated nicotine pathway gene expression and increased nicotine accumulation. Our findings suggest that a previously uncharacterized PP-PK module acts to modulate alkaloid biosynthesis, highlighting the importance of post-translational control in the biosynthesis of specialized plant metabolites.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Nicotiana , Nicotina/biosíntesis , Fosfoproteínas Fosfatasas , Proteínas de Plantas , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxilipinas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo
8.
Sci Rep ; 10(1): 11751, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678207

RESUMEN

Tobacco (Nicotiana tabacum) is considered as the model plant for alkaloid research, of which nicotine accounts for 90%. Many nicotine biosynthetic genes have been identified and were known to be regulated by jasmonate-responsive transcription factors. As an important regulator in plant physiological processes, whether small RNAs are involved in nicotine biosynthesis is largely unknown. Here, we combine transcriptome, small RNAs and degradome analysis of two native tobacco germplasms YJ1 and ZY100 to investigate small RNA's function. YJ1 leaves accumulate twofold higher nicotine than ZY100. Transcriptome analysis revealed 3,865 genes which were differently expressed in leaf and root of two germplasms, including some known nicotine and jasmonate pathway genes. By small RNA sequencing, 193 miRNAs were identified to be differentially expressed between YJ1 and ZY100. Using in silico and degradome sequencing approaches, six nicotine biosynthetic genes and seven jasmonate pathway genes were predicted to be targeted by 77 miRNA loci. Three pairs among them were validated by transient expression in vivo. Combined analysis of degradome and transcriptome datasets revealed 51 novel miRNA-mRNA interactions that may regulate nicotine biosynthesis. The comprehensive analysis of our study may provide new insights into the regulatory network of nicotine biosynthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Nicotina/biosíntesis , ARN de Planta , ARN Pequeño no Traducido , Transcriptoma , Biología Computacional/métodos , Epistasis Genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Filogenia , Interferencia de ARN , Estabilidad del ARN , Nicotiana/clasificación
9.
Planta ; 251(4): 92, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32242247

RESUMEN

MAIN CONCLUSION: The role of six alkaloid biosynthesis genes in the process of nicotine accumulation in tobacco was investigated. Downregulation of ornithine decarboxylase, arginine decarboxylase, and aspartate oxidase resulted in viable plants with a significantly lower nicotine content. Attenuation of nicotine accumulation in Nicotiana tabacum was addressed upon the application of RNAi technologies. The approach entailed a downregulation in the expression of six different alkaloid biosynthesis genes encoding upstream enzymes that are thought to function in the pathway of alkaloid and nicotine biosynthesis. Nine different RNAi constructs were designed to lower the expression level of the genes that encode the enzymes arginine decarboxylase, agmatine deiminase, aspartate oxidase, arginase, ornithine decarboxylase, and SAM synthase. Agrobacterium-based transformation of tobacco leaves was applied, and upon kanamycin selection, T0 and subsequently T1 generation seeds were produced. Mature T1 plants in the greenhouse were topped to prevent flowering and leaf nos. 3 and 4 below the topping point were tested for transcript levels and product accumulation. Down-regulation in arginine decarboxylase, aspartate oxidase, and ornithine decarboxylase consistently resulted in lower levels of nicotine in the leaves of the corresponding plants. Transformants with the aspartate oxidase RNAi construct showed the lowest nicotine level in the leaves, which varied from below the limit of quantification (20 µg per g dry leaf weight) to 1.3 mg per g dry leaf weight. The amount of putrescine, the main polyamine related to nicotine biosynthesis, showed a qualitative correlation with the nicotine content in the arginine decarboxylase and ornithine decarboxylase RNAi-expressing transformants. A putative early senescence phenotype and lower viability of the older leaves was observed in some of the transformant lines. The results are discussed in terms of the role of the above-mentioned genes in the alkaloid biosynthetic pathway and may serve to guide efforts to attenuate nicotine content in tobacco leaves.


Asunto(s)
Alcaloides/biosíntesis , Alcaloides/genética , Nicotiana/genética , Nicotina/biosíntesis , Nicotina/genética , Aminoácido Oxidorreductasas/genética , Vías Biosintéticas/genética , Carboxiliasas/genética , Regulación de la Expresión Génica de las Plantas , Ornitina Descarboxilasa/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Poliaminas/metabolismo , Putrescina/metabolismo , Semillas
10.
Plant Cell Physiol ; 61(6): 1041-1053, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191315

RESUMEN

The toxic alkaloid nicotine is produced in the roots of Nicotiana species and primarily accumulates in leaves as a specialized metabolite. A series of metabolic and transport genes involved in the nicotine pathway are coordinately upregulated by a pair of jasmonate-responsive AP2/ERF-family transcription factors, NtERF189 and NtERF199, in the roots of Nicotiana tabacum (tobacco). In this study, we explored the potential of manipulating the expression of these transcriptional regulators to alter nicotine biosynthesis in tobacco. The transient overexpression of NtERF189 led to alkaloid production in the leaves of Nicotiana benthamiana and Nicotiana alata. This ectopic production was further enhanced by co-overexpressing a gene encoding a basic helix-loop-helix-family MYC2 transcription factor. Constitutive and leaf-specific overexpression of NtERF189 increased the accumulation of foliar alkaloids in transgenic tobacco plants but negatively affected plant growth. By contrast, in a knockout mutant of NtERF189 and NtERF199 obtained through CRISPR/Cas9-based genome editing, alkaloid levels were drastically reduced without causing major growth defects. Metabolite profiling revealed the impact of manipulating the nicotine pathway on a wide range of nitrogen- and carbon-containing metabolites. Our findings provide insights into the biotechnological applications of engineering metabolic pathways by targeting transcription factors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Nicotina/biosíntesis , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
11.
BMC Plant Biol ; 20(1): 30, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959100

RESUMEN

BACKGROUND: Nicotiana tabacum is an important economic crop. Topping, a common agricultural practice employed with flue-cured tobacco, is designed to increase leaf nicotine contents by increasing nicotine biosynthesis in roots. Many genes are found to be differentially expressed in response to topping, particularly genes involved in nicotine biosynthesis, but comprehensive analyses of early transcriptional responses induced by topping are not yet available. To develop a detailed understanding of the mechanisms regulating nicotine biosynthesis after topping, we have sequenced the transcriptomes of Nicotiana tabacum roots at seven time points following topping. RESULTS: Differential expression analysis revealed that 4830 genes responded to topping across all time points. Amongst these, nine gene families involved in nicotine biosynthesis and two gene families involved in nicotine transport showed significant changes during the immediate 24 h period following topping. No obvious preference to the parental species was detected in the differentially expressed genes (DEGs). Significant changes in transcript levels of nine genes involved in nicotine biosynthesis and phytohormone signal transduction were validated by qRT-PCR assays. 549 genes encoding transcription factors (TFs), found to exhibit significant changes in gene expression after topping, formed 15 clusters based on similarities of their transcript level time-course profiles. 336 DEGs involved in phytohormone signal transduction, including genes functionally related to the phytohormones jasmonic acid, abscisic acid, auxin, ethylene, and gibberellin, were identified at the earliest time point after topping. CONCLUSIONS: Our research provides the first detailed analysis of the early transcriptional responses to topping in N. tabacum, and identifies excellent candidates for further detailed studies concerning the regulation of nicotine biosynthesis in tobacco roots.


Asunto(s)
Genes de Plantas , Nicotiana/genética , Nicotina/biosíntesis , Transcriptoma , Producción de Cultivos/métodos , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo , Nicotiana/metabolismo
12.
Genes (Basel) ; 10(11)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739571

RESUMEN

Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.


Asunto(s)
Nicotiana/metabolismo , Nicotina/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Acetatos/metabolismo , Alcaloides/biosíntesis , Alcaloides/toxicidad , Anabasina/biosíntesis , Anabasina/toxicidad , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Secuencias Hélice-Asa-Hélice/genética , Nicotina/análogos & derivados , Nicotina/economía , Nicotina/toxicidad , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Piridinas/toxicidad , Nicotiana/genética , Productos de Tabaco/economía , Productos de Tabaco/toxicidad , Factores de Transcripción/metabolismo
13.
N Biotechnol ; 48: 1-11, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29017819

RESUMEN

Jasmonates (JAs) are signals in plant stress responses and development. One of the first observed and prominent responses to JAs is the induction of biosynthesis of different groups of secondary compounds. Among them are nicotine, isoquinolines, glucosinolates, anthocyanins, benzophenanthridine alkaloids, artemisinin, and terpenoid indole alkaloids (TIAs), such as vinblastine. This brief review describes modes of action of JAs in the biosynthesis of anthocyanins, nicotine, TIAs, glucosinolates and artemisinin. After introducing JA biosynthesis, the central role of the SCFCOI1-JAZ co-receptor complex in JA perception and MYB-type and MYC-type transcription factors is described. Brief comments are provided on primary metabolites as precursors of secondary compounds. Pathways for the biosynthesis of anthocyanin, nicotine, TIAs, glucosinolates and artemisinin are described with an emphasis on JA-dependent transcription factors, which activate or repress the expression of essential genes encoding enzymes in the biosynthesis of these secondary compounds. Applied aspects are discussed using the biotechnological formation of artemisinin as an example of JA-induced biosynthesis of secondary compounds in plant cell factories.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antocianinas/biosíntesis , Artemisininas/metabolismo , Vías Biosintéticas , Glucosinolatos/biosíntesis , Ingeniería Metabólica , Modelos Biológicos , Nicotina/biosíntesis , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
14.
J Plant Res ; 132(2): 173-180, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30478481

RESUMEN

The jasmonate-responsive transcription factor ERF189 in tobacco (Nicotiana tabacum) and its ortholog JRE4 in tomato (Solanum lycopersicum) regulate a series of biosynthetic genes involved in the nicotine and steroidal glycoalkaloid pathways. In tobacco, QUINOLINATE PHOSPHORIBOSYL TRANSFERASE 2 (NtQPT2) is regulated by ERF189; however, we found that the tomato QPT gene is not regulated by JRE4. Here, we explored whether and how NtQPT2 is regulated in a heterogenous tomato host. We used a NtQPT2 promoter-driven reporter gene to examine the cell type-specific and jasmonate-induced expression of this gene in transgenic tomato hairy roots. The downregulation of the reporter in the jre4 loss-of-function tomato mutant and its transactivation by JRE4 in transient expression experiments suggested that JRE4, like its ortholog ERF189 in tobacco, activates the NtQPT2 promoter in tomato. We discuss the evolution of QPT2 in the Nicotiana lineage, which mainly occurred through mutational changes in the promoter that altered the control of the functionally conserved transcription factors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Pentosiltransferasa/genética , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Evolución Molecular , Genes Reporteros , Solanum lycopersicum/genética , Nicotina/biosíntesis , Pentosiltransferasa/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Activación Transcripcional
15.
BMC Genomics ; 19(1): 855, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497378

RESUMEN

BACKGROUND: Nicotiana rustica (Aztec tobacco), like common tobacco (Nicotiana tabacum), is an allotetraploid formed through a recent hybridization event; however, it originated from completely different progenitor species. Here, we report the comparative genome analysis of wild type N. rustica (5 Gb; 2n = 4x = 48) with its three putative diploid progenitors (2.3-3 Gb; 2n = 2x =24), Nicotiana undulata, Nicotiana paniculata and Nicotiana knightiana. RESULTS: In total, 41% of N. rustica genome originated from the paternal donor (N. undulata), while 59% originated from the maternal donor (N. paniculata/N. knightiana). Chloroplast genome and gene analyses indicated that N. knightiana is more closely related to N. rustica than N. paniculata. Gene clustering revealed 14,623 ortholog groups common to other Nicotiana species and 207 unique to N. rustica. Genome sequence analysis indicated that N. knightiana is more closely related to N. rustica than N. paniculata, and that the higher nicotine content of N. rustica leaves is the result of the progenitor genomes combination and of a more active transport of nicotine to the shoot. CONCLUSIONS: The availability of four new Nicotiana genome sequences provide insights into how speciation impacts plant metabolism, and in particular alkaloid transport and accumulation, and will contribute to better understanding the evolution of Nicotiana species.


Asunto(s)
Alcaloides/biosíntesis , Evolución Molecular , Genoma de Planta , Nicotiana/genética , Tetraploidía , Aminoácidos/metabolismo , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Genoma del Cloroplasto , Metales/metabolismo , Anotación de Secuencia Molecular , Nicotina/biosíntesis , Filogenia , Hojas de la Planta/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Transcriptoma/genética
16.
Plant Physiol ; 177(2): 833-846, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29720557

RESUMEN

The jasmonate (JA) phytohormone signaling system is an important mediator of plant defense against herbivores. Plants deficient in JA signaling are more susceptible to herbivory as a result of deficiencies in defensive trait expression. Recent studies have implicated the circadian clock in regulating JA-mediated defenses, but the molecular mechanisms linking the clock to JA signaling are unclear. Here, we report that wild tobacco (Nicotiana attenuata) plants rendered deficient in the clock component ZEITLUPE (ZTL) by RNA interference have attenuated resistance to the generalist herbivore Spodoptera littoralis This effect can be attributed in part to reduced concentrations of nicotine, an abundant JA-regulated toxin produced in N. attenuata roots and transported to shoots. RNA interference targeting ZTL dramatically affects the root circadian clock and reduces the expression of nicotine biosynthetic genes. Protein-protein interaction experiments demonstrate that ZTL regulates JA signaling by directly interacting with JASMONATE ZIM domain (JAZ) proteins in a CORONATINE-INSENSITIVE1- and jasmonoyl-isoleucine conjugate-independent manner, thereby regulating a JAZ-MYC2 module that is required for nicotine biosynthesis. Our study reveals new functions for ZTL and proposes a mechanism by which a clock component directly influences JA signaling to regulate plant defense against herbivory.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria , Nicotiana/fisiología , Nicotina/biosíntesis , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Nicotina/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Metabolismo Secundario , Spodoptera/fisiología
17.
Talanta ; 185: 324-327, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29759207

RESUMEN

Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we monitored the auxin-regulated nicotine biosynthesis in tobacco (Nicotiana tabacum) and evaluated possible biological effects. The measured nicotine concentrations in different experiments were comparable to literature data obtained with conventional methods. The observed compounds suggest the rupture of trichomes, and cell damage was observed on the spots exposed to LTP. However, the lesions only affected a negligible proportion of the leaf surface area and no systemic reaction was noted. Thus, our study provides the proof-of-concept for measuring the biosynthetic activity of plant surfaces in vivo.


Asunto(s)
Nicotiana/metabolismo , Nicotina/biosíntesis , Hojas de la Planta/metabolismo , Temperatura , Espectrometría de Masas/instrumentación , Nicotina/química , Tamaño de la Partícula , Hojas de la Planta/química , Nicotiana/química
18.
PLoS One ; 13(4): e0195422, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29630638

RESUMEN

Endogenous nicotine was confirmed to be present in tea plants (Camellia sinensis L.) by liquid chromatography-tandem mass spectrometry of tea samples from tea-producing regions in six Asian countries. All samples contained nicotine (0.011-0.694 µg g-1 dry weight). Nicotine contents remained constant during manufacturing of green, oolong and black teas, implying that nicotine is stable against heating, drying, enzymatic oxidation and mechanical damage during processing. Flower buds and seeds of cultivar Yabukita also contained nicotine (0.030-0.041 µg g-1 dry weight). A comparison of two cultivars revealed that higher nicotine contents were found in the black tea cultivar Benifuki. All plant parts of hydroponic Yabukita contained nicotine (0.003-0.013 µg g-1 dry weight). Tea cells cultured in B5 medium as well as roots and stems of tea seedlings contained nicotine levels similar to those of new leaves from field-grown plants. Although the levels of endogenous nicotine in tea plants are extremely low and sample contamination cannot be discounted, these levels exceed the maximum acceptable limit in Japan (0.01 µg g-1 dry weight).


Asunto(s)
Camellia sinensis/metabolismo , Contaminación de Alimentos/análisis , Nicotina/análisis , Nicotina/biosíntesis , Camellia sinensis/crecimiento & desarrollo , Células Cultivadas , Cromatografía Liquida , Humanos , Japón , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrometría de Masas en Tándem , Té/química
19.
Int J Mol Sci ; 19(1)2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29316708

RESUMEN

Carbon monoxide (CO) acts as an important signal in many physiological responses in plants, but its role in plant secondary metabolism is still unknown. Nicotine is the main alkaloid generated in tobacco and the plant hormone jasmonic acid (JA) has previously been reported to efficiently induce its biosynthesis. Whether and how CO interacts with JA to regulate nicotine biosynthesis in tobacco remains elusive. In this study, we demonstrate that high temperature (HT) induces quick accumulation of nicotine in tobacco roots, combined with an increase in CO and JA concentration. Suppressing CO generation reduced both JA and nicotine biosynthesis, whereas exogenous application of CO increased JA and nicotine content. CO causes an increased expression of NtPMT1 (a key nicotine biosynthesis enzyme), via promoting NtMYC2a binding to the G-box region of its promoter, leading to heightened nicotine levels under HT conditions. These data suggest a novel function for CO in stimulating nicotine biosynthesis in tobacco under HT stress, through a JA signal.


Asunto(s)
Monóxido de Carbono/farmacología , Calor , Nicotiana/metabolismo , Nicotina/biosíntesis , Ciclopentanos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética
20.
Int J Mol Sci ; 19(1)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29286298

RESUMEN

Colicins are natural non-antibiotic bacterial proteins with a narrow spectrum but an extremely high antibacterial activity. These proteins are promising food additives for the control of major pathogenic Shiga toxin-producing E. coli serovars in meats and produce. In the USA, colicins produced in edible plants such as spinach and leafy beets have already been accepted by the U. S. Food and Drug Administration (FDA) and U. S. Department of Agriculture (USDA) as food-processing antibacterials through the GRAS (generally recognized as safe) regulatory review process. Nicotiana benthamiana, a wild relative of tobacco, N. tabacum, has become the preferred production host plant for manufacturing recombinant proteins-including biopharmaceuticals, vaccines, and biomaterials-but the purification procedures that have been employed thus far are highly complex and costly. We describe a simple and inexpensive purification method based on specific acidic extraction followed by one chromatography step. The method provides for a high recovery yield of purified colicins, as well as a drastic reduction of nicotine to levels that could enable the final products to be used on food. The described purification method allows production of the colicin products at a commercially viable cost of goods and might be broadly applicable to other cost-sensitive proteins.


Asunto(s)
Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Colicinas/aislamiento & purificación , Aditivos Alimentarios/aislamiento & purificación , Carne/microbiología , Nicotiana/genética , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Bovinos , Colicinas/biosíntesis , Colicinas/química , Colicinas/farmacología , Aditivos Alimentarios/química , Aditivos Alimentarios/metabolismo , Aditivos Alimentarios/farmacología , Pruebas de Sensibilidad Microbiana , Nicotina/antagonistas & inhibidores , Nicotina/biosíntesis , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Nicotiana/química , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...