RESUMEN
Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect of tetracycline together with either nitroxoline, sanguinarine, or zinc pyrithione (representing various classes of plant-based compounds) was evaluated in vitro against selected diarrhoeic bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Shigella flexneri, Vibrio parahaemolyticus, and Yersinia enterocolitica). The chequerboard method in 96-well microtiter plates was used to determine the sum of the fractional inhibitory concentration indices (FICIs). Three independent experiments were performed per combination, each in triplicate. It was observed that the combination of tetracycline with either nitroxoline, sanguinarine, or zinc pyrithione produced synergistic effects against most of the pathogenic bacteria tested, with FICI values ranging from 0.086 to 0.5. Tetracycline-nitroxoline combinations produced the greatest synergistic action against S. flexneri at a FICI value of 0.086. The combinations of the agents tested in this study can thus be used for the development of new anti-diarrhoeic medications. However, studies focusing on their in vivo anti-diarrhoeic activity and safety are required before any consideration for utilization in human medicine.
Asunto(s)
Antibacterianos , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Tetraciclina , Tetraciclina/farmacología , Antibacterianos/farmacología , Alcaloides/farmacología , Bacterias/efectos de los fármacos , Diarrea/microbiología , Diarrea/tratamiento farmacológico , Humanos , Piridinas/farmacología , Nitroquinolinas/farmacología , Compuestos OrganometálicosRESUMEN
ABSTRACTNew Delhi metallo-ß-lactamase-1 (NDM-1) has rapidly disseminated worldwide, leading to multidrug resistance and worse clinical prognosis. Designing and developing effective NDM-1 inhibitors is a critical and urgent challenge. In this study, we constructed a library of long-lasting nitroxoline derivatives and identified ASN-1733 as a promising dual-functional antibiotic. ASN-1733 can effectively compete for Ca2+ on the bacterial surface, causing the detachment of lipopolysaccharides (LPS), thereby compromising the outer membrane integrity and permeability and exhibiting broad-spectrum bactericidal activity. Moreover, ASN-1733 demonstrated wider therapeutic applications than nitroxoline in mouse sepsis, thigh and mild abdominal infections. Furthermore, ASN-1733 can effectively inhibit the hydrolytic capability of NDM-1 and exhibits synergistic killing effects in combination with meropenem against NDM-1 positive bacteria. Mechanistic studies using enzymatic experiments and computer simulations revealed that ASN-1733 can bind to key residues on Loop10 of NDM-1, hindering substrate entry into the enzyme's active site and achieving potent inhibitory activity (Ki = 0.22â µM), even in the presence of excessive Zn2+. These findings elucidate the antibacterial mechanism of nitroxoline and its derivatives, expand their potential application in the field of antibacterial agents and provide new insights into the development of novel NDM-1 inhibitors.
Asunto(s)
Infecciones Bacterianas , Nitroquinolinas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Nitroquinolinas/farmacología , beta-Lactamasas/metabolismo , Bacterias , Pruebas de Sensibilidad MicrobianaRESUMEN
The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side-effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat-resistant strain and increased the anti-mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co-transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity.
Asunto(s)
Reposicionamiento de Medicamentos , Mpox , Nitroquinolinas , Humanos , Antibacterianos/farmacología , Antivirales/farmacología , Cidofovir , Mpox/tratamiento farmacológico , Nitroquinolinas/farmacologíaRESUMEN
Clioquinol and nitroxoline, two drugs with numerous pharmacological properties fallen into disuse for many decades. The first was considered dangerous due to contraindications and the second mainly because was taken as ineffective, despite its known antibacterial activity. In the last decades, the advances in pharmaceutical chemistry, molecular biology, toxicology and genetics allowed to better understand the cellular action of these compounds, some toxicological issues and/or activity scopes. Thus, a new opportunity for these drugs to be considered as potential antimicrobial agents has arisen. This review contemplates the trajectory of clioquinol and nitroxoline from their emergence to the present day, emphasizing the new studies that indicate the possibility of reintroduction for specific cases.
Asunto(s)
Antiinfecciosos , Clioquinol , Nitroquinolinas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Clioquinol/farmacología , Nitroquinolinas/farmacologíaRESUMEN
Aims: This study was aimed to identify compounds with significant inhibitory potential against multidrug-resistant (MDR), multidrug-sensitive and clinical isolates of Klebsiella pneumoniae. Materials & methods: Antibacterial activity of the nitroquinoline derivatives was assessed by micro-plate Alamar Blue assay. Results: Nitroquinoline derivatives 9, 11 and 14 showed inhibitory activity against MDR K. pneumoniae. Docking studies of these compounds with topoisomerase IV of K. pneumonia indicated the interactions of these compounds at the active site residues of enzyme near to cofactor (Mg+2). Furthermore, compound 11 was identified as a reactive oxygen species (ROS) inducer. None of the compounds showed hemolytic effect. Conclusion: This study was designed to identify compounds active against MDR K. pneumoniae which causes infections, such as pneumonia and urinary tract infections.
Asunto(s)
Infecciones por Klebsiella , Nitroquinolinas , Neumonía , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Inhibidores de Crecimiento/farmacología , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Nitroquinolinas/farmacología , Neumonía/tratamiento farmacológicoRESUMEN
Carbapenemases such as metallo-ß-lactamases (MBLs) are spreading among Gram-negative bacterial pathogens. Infections due to these multidrug-resistant bacteria constitute a major global health challenge. Therapeutic strategies against carbapenemase producing bacteria include ß-lactamase inhibitor combinations. Nitroxoline is a broad-spectrum antibiotic with restricted indication for urinary tract infections. In this study, we report on nitroxoline as an inhibitor of MBLs. We investigate the structure-activity relationships of nitroxoline derivatives considering in vitro MBL inhibitory potency in a fluorescence based assay using purified recombinant MBLs, NDM-1 and VIM-1. We investigated the most potent nitroxoline derivative in combination with imipenem against clinical isolates as well as transformants producing MBL by broth microdilution and time-kill kinetics. Our findings demonstrate that nitroxoline derivatives are potent MBL inhibitors and in combination with imipenem overcome MBL-mediated carbapenem resistance.
Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Nitroquinolinas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/aislamiento & purificaciónRESUMEN
The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Unión al ADN/metabolismo , Neoplasias Pulmonares/patología , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Humanos , Nitroquinolinas/farmacología , Monoéster Fosfórico Hidrolasas/fisiología , ARN Interferente Pequeño/metabolismo , Ubiquitinación/fisiologíaRESUMEN
OBJECTIVES: To investigate the in vitro activity of nitroxoline against a molecularly characterized collection of clinical Candida auris isolates. METHODS: Thirty-five clinical isolates of C. auris from diverse sources representing all five different C. auris clades were included in the study. Nitroxoline activity was assessed using broth microdilution. Additionally, susceptibility testing by disc diffusion was assessed on RPMI-1640 and Müller-Hinton agar plates. Minimal inhibitory concentrations of the antifungals fluconazole, voriconazole, amphotericin B and anidulafungin were determined. RESULTS: Nitroxoline MICs ranged from 0.125 to 1 mg/L (MIC50/90 0.25/0.5 mg/L). Compared with amphotericin B (MIC >1 mg/L in 4/35 isolates), anidulafungin (MIC >0.06 mg/L in 26/35 isolates) and fluconazole (MIC >4 mg/L in 31/35 isolates), in vitro activity of nitroxoline was high. Isolates belonging to clade I had marginally lower nitroxoline MICs (range 0.125-0.5 mg/L, mean MIC 0.375 mg/L) compared with clade III (range 0.5-1 mg/L, mean MIC 0.7 mg/L; p = 0.0094). The correlation of MIC and inhibition zones by disc diffusion was good when using RPMI-agar for disc diffusion, with a Pearson's correlation coefficient of -0.74 (95% CI -0.86 to -0.54). CONCLUSIONS: Nitroxoline has excellent in vitro activity against C. auris isolates, with MICs of 0.125-1 mg/L (for comparison, the EUCAST breakpoint for uncomplicated urinary tract infection with Escherichia coli is ≤ 16 mg/L). It is an approved, well-tolerated antimicrobial that achieves high urinary concentrations after oral administration and could be a useful treatment option in C. auris candiduria.
Asunto(s)
Antifúngicos , Candida auris/efectos de los fármacos , Nitroquinolinas/farmacología , Anfotericina B/farmacología , Anidulafungina/farmacología , Antifúngicos/farmacología , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
Repurposing of currently used drugs for new indications benefits from known experience with those agents. Rational repurposing can be achieved when newly uncovered molecular activities are leveraged against diseases that utilize those mechanisms. Nitroxoline is an antibiotic with metal-chelating activity used to treat urinary tract infections. This small molecule also inhibits the function of bromodomain and extraterminal (BET) proteins that regulate oncogene expression in cancer. Lymphoproliferation driven by the Epstein-Barr virus (EBV) depends on these same proteins. We therefore tested the efficacy of nitroxoline against cell culture and small animal models of EBV-associated lymphoproliferation. Nitroxoline indeed reduces cell and tumor growth. Nitroxoline also acts faster than the prototype BET inhibitor JQ1. We suggest that this rational repurposing may hold translational promise.
Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/efectos de los fármacos , Linfocitos/efectos de los fármacos , Nitroquinolinas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Reposicionamiento de Medicamentos , Infecciones por Virus de Epstein-Barr/prevención & control , Humanos , Ratones , Nitroquinolinas/administración & dosificación , Nitroquinolinas/química , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Although the proteins in bromodomain and extra-terminal domain (BET) family are promising therapy drug targets for numerous human diseases, the binding effectiveness is interfered by the competition from non-BET protein BRD9. In this study, molecular docking, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition methods were employed to clarify the selective inhibition mechanism of nitroxoline. The results showed that the different cavity volume of effective embedding inhibitor and the changes in conserved residues were associated with the significant higher selectivity of inhibitor nitroxoline for BET family than non-BET protein (BRD9). In addition, the non-polar interactions occurred in Phe83, Val87 at ZA loop, and the polar interaction appeared in Met132, Asn135 at BC loop. Therefore, when designing a new inhibitor, it could better improve the inhibitor activity by introducing the heteroatom conjugated pyridine-like moiety and the strong electron-withdrawing nitro-like moiety. Overall, this study not only clarified the molecular mechanism of the selective inhibition of nitroxoline, but also provided insight into designing more effective BET inhibitors in next step.
Asunto(s)
Nitroquinolinas/metabolismo , Nitroquinolinas/farmacología , Proteínas/metabolismo , Sitios de Unión , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Nitroquinolinas/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas/antagonistas & inhibidores , Relación Estructura-Actividad , Factores de Transcripción/metabolismoRESUMEN
REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Nitroquinolinas/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , ADN/biosíntesis , Daño del ADN/fisiología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Inhibidores Enzimáticos/administración & dosificación , Humanos , Proteínas Mad2/metabolismo , Ratones , Mutagénesis , Neoplasias/enzimología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Nitroxoline, a well-known antimicrobial agent, has been identified in several independent studies, and on different molecular targets, as a promising candidate to be repurposed for cancer treatment. One specific target of interest concerns cathepsin B, a lysosomal peptidase involved in the degradation of the extracellular matrix (ECM), leading to tumor invasion, metastasis and angiogenesis. However, dedicated optimization of the nitroxoline core is needed to actually deliver a nitroxoline-based antitumor drug candidate. Within that context, 34 novel nitroxoline analogs were synthesized and evaluated for their relative cathepsin B inhibitory activity, their antiproliferative properties and their antimicrobial activity. More than twenty analogs were shown to exert a similar or even slightly higher cathepsin B inhibitory activity compared to nitroxoline. The implemented modifications of the nitroxoline scaffold and the resulting SAR information can form an eligible basis for further optimization toward more potent cathepsin B inhibitors in the quest for a clinical nitroxoline-based antitumor agent.
Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Catepsina B/antagonistas & inhibidores , Nitroquinolinas/farmacología , Inhibidores de Proteasas/farmacología , Antibacterianos/síntesis química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nitroquinolinas/síntesis química , Inhibidores de Proteasas/síntesis química , Pseudomonas aeruginosa/efectos de los fármacosRESUMEN
Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.
Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Nitroquinolinas/síntesis química , Nitroquinolinas/farmacología , Neoplasias Pancreáticas/patología , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Humanos , Nitroquinolinas/química , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-ActividadRESUMEN
We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and ß-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.
Asunto(s)
Proteínas de Neoplasias/genética , Nitroquinolinas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteómica , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologíaRESUMEN
OBJECTIVES: To determine the mechanism of resistance to the antibiotic nitroxoline in Escherichia coli. METHODS: Spontaneous nitroxoline-resistant mutants were selected at different concentrations of nitroxoline. WGS and strain reconstruction were used to define the genetic basis for the resistance. The mechanistic basis of resistance was determined by quantitative PCR (qPCR) and by overexpression of target genes. Fitness costs of the resistance mutations and cross-resistance to other antibiotics were also determined. RESULTS: Mutations in the transcriptional repressor emrR conferred low-level resistance to nitroxoline [nitroxoline MIC (MICNOX)=16 mg/L] by increasing the expression of the emrA and emrB genes of the EmrAB-TolC efflux pump. These resistant mutants showed no fitness reduction and displayed cross-resistance to nalidixic acid. Second-step mutants with higher-level resistance (MICNOX=32-64 mg/L) had mutations in the emrR gene, together with either a 50 kb amplification, a mutation in the gene marA, or an IS upstream of the lon gene. The latter mutations resulted in higher-level nitroxoline resistance due to increased expression of the tolC gene, which was confirmed by overexpressing tolC from an inducible plasmid in a low-level resistance mutant. Furthermore, the emrR mutations conferred a small increase in resistance to nitrofurantoin only when combined with an nfsAB double-knockout mutation. However, nitrofurantoin-resistant nfsAB mutants showed no cross-resistance to nitroxoline. CONCLUSIONS: Mutations in different genes causing increased expression of the EmrAB-TolC pump lead to an increased resistance to nitroxoline. The structurally similar antibiotics nitroxoline and nitrofurantoin appear to have different modes of action and resistance mechanisms.
Asunto(s)
Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Nitroquinolinas , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Mutación , Nitroquinolinas/farmacologíaRESUMEN
BACKGROUND: The first choice of treatment in Hepatocellular Carcinoma (HCC) is 5-fluorouracil (5-FU). Nitroxoline (NIT), a potent inhibitor of Cathepsin B, impairs tumor progression by decreased extracellular matrix degradation. The objective of the current project was designed to target nanoparticles for co-delivery of 5-FU and NIT in order to enhance the 5-FU cytotoxic effects and reduce the metastatic properties of HepG2 cells. METHODS: 5-FU and NIT were loaded in chitosan-chondroitin nanoparticles. To target the CD44 receptors of HepG2 cells, Hyaluronic Acid (HA) was conjugated to the chondroitin by adipic acid dihydrazide and the conjugation was confirmed by FTIR and 1HNMR. After physicochemical characterization and optimization of the processing variables, MTT assay was done on HepG2 and NIH3T3 cell lines to determine the cytotoxic properties of HA targeted nanoparticles. Migration of the cells was studied to compare the co-delivery of the drugs with each drug alone. RESULTS: The optimized nanoparticles showed the particle size of 244.7±16.3nm, PDI of 0.30±0.03, drug entrapment efficiency of 46.3±5.0% for 5-FU and 75.1±0.9% for NIT. The drug release efficiency up to 8 hours was about 37.6±0.9% for 5-FU and 62.9±0.7% for NIT. The co-delivery of 5-FU and NIT in targeted nanoparticles showed significantly more cytotoxicity than the mixture of the two free drugs, non-targeted nanoparticles or each drug alone and reduced the IC50 value of 5-FU from 3.31±0.65µg/ml to 0.17±0.03µg/ml and the migration of HepG2 cells was also reduced to five-fold. CONCLUSION: Co-delivery of 5-FU and NIT by HA targeted chitosan-chondroitin nanoparticles may be promising in HCC.
Asunto(s)
Antineoplásicos/química , Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/química , Neoplasias Hepáticas/tratamiento farmacológico , Nanocápsulas/química , Nitroquinolinas/química , Inhibidores de Proteasas/química , Animales , Antineoplásicos/farmacología , Catepsina B/antagonistas & inhibidores , Quitosano/química , Condroitín/química , Liberación de Fármacos , Quimioterapia Combinada , Fluorouracilo/farmacología , Células Hep G2 , Humanos , Ácido Hialurónico/metabolismo , Ratones , Terapia Molecular Dirigida , Células 3T3 NIH , Nitroquinolinas/farmacología , Inhibidores de Proteasas/farmacologíaRESUMEN
Oxidative stress has been documented as one of the significant causes of neurodegenerative diseases. Therefore, antioxidant therapy for the prevention of neurodegenerative diseases seems to be an interesting strategy in drug discovery. The quinoline-based compound, namely 5-nitro-8-quinolinol (NQ), has shown excellent antimicrobial, anticancer, and anti-inflammatory activities. However, its neuroprotective effects and precise molecular mechanisms in human neuronal cells have not been elucidated. In this work, the effects of NQ on cell viability and morphology were evaluated by the MTT assay and microscopic observation. Moreover, the underlying mechanisms of this compound, inducing the survival rate of neuronal cells under oxidative stress, were investigated by reactive oxygen species (ROS) assay, flow cytometry, Western blotting, and immunofluorescence techniques. In addition, the molecular interaction of sirtuin1 (SIRT1) with NQ was constructed using the AutoDock 4.2 program. Interestingly, NQ protected SH-SY5Y cells against H2O2-induced neurotoxicity through scavenging ROS, upregulating the levels of SIRT1 and FOXO3a, increasing the levels of antioxidant enzymes (catalase and superoxide dismutase), promoting antiapoptotic BCL-2 protein expression, and reducing apoptosis. Besides, molecular docking also revealed that NQ interacted satisfactorily with the active site of SIRT1 similar to the resveratrol, which is the SIRT1 activator and strong antioxidant. These findings suggest that NQ prevents oxidative-stress-induced neurodegeneration because of its antioxidant capacity as well as antiapoptotic property through SIRT1-FOXO3a signaling pathway. Thus, NQ might be a drug that could be repurposed for prevention of neurodegeneration.
Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Neurodegenerativas/prevención & control , Neuronas/efectos de los fármacos , Nitroquinolinas/farmacología , Sustancias Protectoras/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismoRESUMEN
Lysosomal cysteine peptidase cathepsin B (catB) is an important tumor-promoting factor involved in tumor progression and metastasis representing a relevant target for the development of new antitumor agents. In the present study, we synthesized 11 ruthenium compounds bearing either the clinical agent nitroxoline that was previously identified as potent selective reversible inhibitor of catB activity or its derivatives. We demonstrated that organoruthenation is a viable strategy for obtaining highly effective and specific inhibitors of catB endo- and exopeptidase activity, as shown using enzyme kinetics and microscale thermophoresis. Furthermore, we showed that the novel metallodrugs by catB inhibition significantly impair processes of tumor progression in in vitro cell based functional assays at low noncytotoxic concentrations. Generally, by using metallodrugs we observed an improvement in catB inhibition, a reduction of extracellular matrix degradation and tumor cell invasion in comparison to free ligands, and a correlation with the reactivity of the monodentate halide leaving ligand.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Catepsina B/antagonistas & inhibidores , Invasividad Neoplásica/prevención & control , Nitroquinolinas/farmacología , Rutenio/farmacología , Antineoplásicos/química , Neoplasias de la Mama/patología , Catepsina B/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Modelos Moleculares , Invasividad Neoplásica/patología , Nitroquinolinas/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Rutenio/químicaRESUMEN
BACKGROUND: Infections caused by carbapenemase-producing Enterobacterales (CPE) constitute a major global health concern and are associated with increased morbidity and mortality. Nitroxoline is an old antibiotic, which has recently been re-launched for the treatment of uncomplicated urinary tract infection. Because of low resistance rates it could be an interesting option for treatment of MDR isolates, yet data on CPE susceptibility are scarce. OBJECTIVES: To analyse the in vitro activity of nitroxoline against CPE. METHODS: MICs of nitroxoline were determined by agar dilution for a collection of well-characterized carbapenemase producers (nâ=â105), producing OXA-48-like (nâ=â36), VIM (nâ=â21), IMI (nâ=â9), IMP (nâ=â6), NDM (nâ=â22), KPC (nâ=â11), OXA-58 (nâ=â2) and GES (nâ=â2). For comparison, MICs of ertapenem, imipenem and meropenem were determined by agar gradient diffusion. RESULTS: For all 105 isolates, the MIC50/90 of nitroxoline was 8/16 mg/L. All Escherichia coli isolates (30/30, 100%) showed low MICs of 2-8 mg/L and were susceptible to nitroxoline. MICs of 32 mg/L were recorded for five isolates of VIM- and IMI-producing Enterobacter cloacae (nâ=â3) and OXA- and VIM-producing Klebsiella pneumoniae (nâ=â2). CONCLUSIONS: Nitroxoline exhibited excellent in vitro activity against most isolates producing common and rare carbapenemases. If the current EUCAST susceptibility breakpoint of ≤16 mg/L for E. coli in uncomplicated urinary tract infections was applied, 95.2% (100/105) of isolates would be classified as susceptible. Nitroxoline could therefore be an alternative oral option for treatment of uncomplicated urinary tract infections caused by CPE.
Asunto(s)
Antiinfecciosos Urinarios/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacter cloacae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Nitroquinolinas/farmacología , Humanos , Imipenem/farmacología , Meropenem/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
In 2018, the European Centre for Disease Prevention and Control reported the first cases of extensively drug-resistant Neisseria gonorrhoeae infections in Europe. Seeking new options for antimicrobial therapy we investigated the susceptibility of N. gonorrhoeae to nitroxoline (NIT) and mecillinam (MCM), both of which are currently only indicated to treat uncomplicated urinary tract infections. Clinical N. gonorrhoeae isolates with non-susceptibility to penicillin from two German medical centres were included (n =27). Most isolates were also non-susceptible to a range of other anti-gonococcal antimicrobials (cefotaxime, ciprofloxacin, azithromycin, tetracycline). All isolates were further characterized by multi-locus sequence typing. MICs of penicillin and cefotaxime were determined by agar gradient diffusion. Production of penicillinase was tested by cefinase disk test. Susceptibility of MCM was investigated by agar dilution, NIT by agar dilution and disk diffusion. Penicillin MICs ranged from 0.125 to 64 mg l-1 and MICs of cefotaxime ranged from < 0.016 to 1 mg l-1 . Five isolates were penicillinase-producers. MICs of MCM ranged from 16 to > 128 mg l-1 whereas MICs of NIT ranged from 0.125 to 2 mg l-1 . NIT disk diffusion (median zone diameter 32 mm) correlated well with results from agar dilution. We demonstrated excellent in vitro activity of NIT against clinical N. gonorrhoeae isolates with non-susceptibility to standard anti-gonococcal antibiotics. MCM activity was unsatisfactory. Correlation of agar dilution and disk diffusion in NIT susceptibility testing is an important aspect with potential clinical implications.