RESUMEN
Nine bacteria were isolated from the episphere of Suaeda maritima (L.) Dumort. Among them, the bacterial strain YSL2 displayed the highest antimicrobial activity on agar plates and exhibited significant novelty compared with other bacteria based on 16S rRNA analysis. Consequently, Nocardiopsis maritima YSL2T was subjected to phenotypic characterization and whole-genome sequencing. Phylogenetic analysis revealed its close association with Nocardiopsis aegyptia SNG49T. Furthermore, genomic analysis of strain YSL2T revealed the presence of various gene clusters, indicating its potential for producing antimicrobial secondary metabolites. Upon cultivation on a large scale, maritiamides A and B (1 and 2) were isolated and characterized as cyclic hexapeptides based on nuclear magnetic resonance, ultraviolet, infrared, and mass spectrometric data. The absolute configurations of the amino acid residues in the maritiamides were determined through chiral derivatization, utilizing FDAA and GITC. Maritiamides 1 and 2 exhibited promising antibacterial activities against Staphylococcus epidermidis and weakly inhibited the growth of Escherichia coli and Pseudomonas fluorescens.
Asunto(s)
Antibacterianos , Nocardiopsis , Antibacterianos/farmacología , Antibacterianos/química , Chenopodiaceae/microbiología , Escherichia coli/efectos de los fármacos , Genómica , Metabolómica , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nocardiopsis/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Filogenia , Pseudomonas/efectos de los fármacos , ARN Ribosómico 16S/genética , Staphylococcus/efectos de los fármacosRESUMEN
Assisted by OSMAC strategy, one new p-terphenyl and two new αpyrone derivates, namely nocarterphenyl I (1) and nocardiopyrone D-E (2-3), were obtained and characterized from the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The structures of these compounds were determined on the basis of MS, NMR spectroscopic data and single-crystal X-ray diffraction. Compound 1 with a rare 2,2'-bithiazole structure among natural products showed promising activity against five bacteria with MIC values ranging from 0.8 to 1.6 µM and 3 exhibited notable antibacterial activity against MRSA compared the positive control ciprofloxacin.
Asunto(s)
Actinobacteria , Compuestos de Terfenilo , Actinobacteria/química , Nocardiopsis , Pironas/química , Estructura Molecular , Antibacterianos/química , Compuestos de Terfenilo/químicaRESUMEN
Saharan soil samples collected in El-Oued province have been investigated for actinobacteria as a valuable source for the production of bioactive metabolites. A total of 273 isolates were obtained and subjected to antagonistic activity tests against human pathogenic germs. A strain with a broad-spectrum antimicrobial activity was selected and identified as Nocardiopsis dassonvillei GSBS4, with high sequence similarities to N. dassonvillei subsp. dassonvilleiT X97886.1 (99%) based on polyphasic taxonomy approach and 16S ribosomal ribonucleic acid gene sequence analysis. The GSBS4 ethyl acetate crude extract showed strong antibacterial activity towards pathogenic bacteria and Candida albicans. It inhibited biofilm formation by Staphylococcus aureus and methicillin-resistant S. aureus with minimum inhibitory concentrations estimated at 0.144 and 1.15 mg·mL-1 , respectively. A 44% biofilm reduction was obtained for S. aureus and 61% for Pseudomonas aeruginosa. Furthermore, phenols composition of the crude extract showed a significant dose-dependent antioxidant activity by α-diphenyl-ß-picrylhydrazyl (57.21%) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (64.29%) radicals scavenging assays. Although no inhibition was obtained on human coronavirus human coronavirus (HCoV) 229E and on model enterovirus (poliovirus 1) infection, a dose-dependent increase in cell viability of HCoV 229E-infected cells was noticed as the viability increased from 21% to 37%. Bioassay-guided fractionation of the crude extract gave a fraction showing antibacterial activity, which was analyzed by liquid chromatography-electrospray mass spectrometric technique, providing structural features on a major purple metabolite.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nocardia , Humanos , Staphylococcus aureus , Suelo , Bioprospección , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Pruebas de Sensibilidad Microbiana , NocardiopsisRESUMEN
This study investigated the combined effects of citric acid (CA) and Nocardiopsis sp. RA07 on the phytoremediation potential of lead (Pb)- and copper (Cu)-contaminated soils by Sorghum bicolor L. The strain RA07 was able to tolerate Pb and Cu, and exhibited plant growth-promoting features like siderophore production, indole-3-acetic acid (IAA) synthesis, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. The combined application of CA and strain RA07 significantly increased S. bicolor growth, chlorophyll content and antioxidant enzymatic activity, and decreased oxidative stress (hydrogen peroxide and malondialdehyde content) under Pb and Cu stress circumstances as compared to individual treatments (i.e., CA and strain RA07). Furthermore, the combined application of CA and RA07 significantly enhanced S. bicolor ability to accumulate Pb and Cu by 64.41% and 60.71% in the root and 188.39% and 125.56% in the shoot, respectively, as compared to the corresponding uninoculated plants. Our results indicate that inoculation of Nocardiopsis sp. together with CA could be a useful practical approach to mitigate Pb and Cu stress on plant growth and increase the effectiveness of phytoremediation in Pb- and Cu-polluted soils.
Asunto(s)
Contaminantes del Suelo , Sorghum , Biodegradación Ambiental , Nocardiopsis , Ácido Cítrico/farmacología , Plomo/farmacología , Suelo , Contaminantes del Suelo/farmacología , Raíces de PlantasRESUMEN
The Sahara Desert, one of the most extreme ecosystems in the planet, constitutes an unexplored source of microorganisms such as mycelial bacteria. In this study, we investigated the diversity of halophilic actinobacteria in soils collected from five regions of the Algerian Sahara. A total of 23 halophilic actinobacterial strains were isolated by using a humic-vitamin agar medium supplemented with 10% NaCl. The isolated halophilic strains were subjected to taxonomic analysis using a polyphasic approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy), and phylogenetic analyses. The isolates showed abundant growth in CMA (complex medium agar) and TSA (tryptic soy agar) media containing 10% NaCl, and chemotaxonomic characteristics were consistent with their assignment to the genus Nocardiopsis. Analysis of the 16S rRNA sequence of 23 isolates showed five distinct clusters and a similarity level ranging between 98.4% and 99.8% within the Nocardiopsis species. Comparison of their physiological characteristics with the nearest species showed significant differences with the closely related species. Halophilic Nocardiopsis isolated from Algerian Sahara soil represents a distinct phyletic line suggesting a potential new species. Furthermore, the isolated strains of halophilic Nocardiopsis were screened for their antagonistic properties against a broad spectrum of microorganisms by the conventional agar method (agar cylinders method) and found to have the capacity to produce bioactive secondary metabolites. Except one isolate (AH37), all isolated Nocardiopsis showed moderate to high biological activities against Pseudomonas syringae and Salmonella enterica, and some isolates showed activities against Agrobacterium tumefaciens, Serratia marcescens, and Klebsiella pneumoniae. However, no isolates were active against Bacillus subtilis, Aspergillus flavus, or Aspergillus niger. The obtained finding implies that the unexplored extreme environments such as the Sahara contain many new bacterial species as a novel drug source for medical and industrial applications.
Asunto(s)
Nocardiopsis , Cloruro de Sodio , Nocardiopsis/metabolismo , Cloruro de Sodio/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Suelo , Agar , Ecosistema , África del Norte , Bacterias/genética , Industria Farmacéutica , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Microbiología del SueloRESUMEN
A polyphasic approach was used to describe two halophilic actinobacterial strains, designated LSu2-4T and RSe5-2T, which were isolated from halophytes [Suaeda maritima (L.) Dum. and Sesuvium portulacastrum (L.) L.] collected from Prachuap Khiri Khan province, Thailand. Comparative analysis of 16S rRNA gene sequences showed that strains LSu2-4T and RSe5-2T were assigned to the genus Nocardiopsis, with Nocardiopsis chromatogenes YIM 90109T(99.2 and 99.2â% similarities, respectively) and Nocardiopsis halophila DSM 44494T(99.0 and 98.8â% similarities, respectively) being their closely related strains. Whereas the 16S rRNA gene sequence similarity between LSu2-4T and RSe5-2T was 99.4â%. Phylogenetic and phylogenomic analyses based on 16S rRNA gene and whole-genome sequences revealed that both strains clustered with N. chromatogenes YIM 90109T and N. halophila DSM 44494T. The average nucleotide identity (ANI) based on blast, ANI based on MUMmer and digital DNA-DNA hybridization (dDDH) relatedness values between the two strains and their closest type strains were below the threshold values for identifying a novel species. Morphological characteristics and chemotaxonomic features of both strains were typical for the genus Nocardiopsis by formed well-developed substrate mycelia and aerial mycelia which fragmented into rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were variously hydrogenated with 10 isoprene units and contained phosphatidylcholine in their polar lipid profiles. Major fatty acids were iso-C16:0 and 10-methyl C18:0. In silico analysis predicted that the genomes of LSu2-4T and RSe5-2T contained genes associated with stress responses and biosynthetic gene clusters encoding diverse bioactive metabolites. Characterization based on chemotaxonomic, phenotypic, genotypic and phylogenetic evidence demonstrated that strains LSu2-4T and RSe5-2T represents two novel species of the genus Nocardiopsis, for which the names Nocardiopsis suaedae sp. nov. (type strain LSu2-4T=TBRC 16415T=NBRC 115855T) and Nocardiopsis endophytica sp. nov. (type strain RSe5-2T=TBRC 16416T=NBRC 115856T) are proposed.
Asunto(s)
Actinobacteria , Actinomycetales , ADN Bacteriano , Nocardia , Ácidos Grasos/química , Plantas Tolerantes a la Sal , Filogenia , Nocardiopsis , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Composición de Base , Nocardia/genética , Vitamina K 2/químicaRESUMEN
A highly thermostable alkaline serine protease gene (SPSPro, MN429015) obtained from haloalkaliphilic actinobacteria, Nocardiopsis sp. Mit-7 (NCIM-5746), was successfully cloned and overexpressed in Escherichia coli BL21 under the control of the T7 promoter in the pET Blue1 vector leading to a 20-kDa gene product. The molecular weight of the recombinant alkaline protease, as determined by SDS-PAGE and the Mass Spectrometer (MALDI-TOF), was 34 kDa. The structural and functional attributes of the recombinant thermostable alkaline serine protease were analyzed by Bioinformatic tools. 3D Monomeric Model and Molecular Docking established the role of the amino acid residues, aspartate, serine, and tryptophan, in the active site of thealkaline protease.The activity of the recombinant alkaline protease was optimal at 65 °C, 5 °C higher than its native protease. The recombinant protease was also active over a wide range of pH 7.0-13.0, with a maximal activity of 6050.47 U/mg at pH 9. Furthermore, the thermodynamic parameters of the immobilized recombinant alkaline protease suggested its reduced vulnerability against adverse conditions under which the enzyme has to undergo varied applications.
Asunto(s)
Nocardiopsis , Serina , Nocardiopsis/metabolismo , Serina/genética , Simulación del Acoplamiento Molecular , Temperatura , Estabilidad de Enzimas , Proteínas Bacterianas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Concentración de Iones de Hidrógeno , Clonación MolecularRESUMEN
Strain Mg02T was isolated from roots of Eucommia ulmoides Oliv. collected from Changde City, Hunan Province, China. Strain Mg02T, which exhibited distinct chemotaxonomic characteristics of the genus Nocardiopsis: cell-wall chemotype III/C, i.e., meso-diaminopimelic acid as diagnostic amino acid in whole-cell hydrolysates and menaquinone MK-10 with variable degrees of saturation in the side chain as the predominant isoprenoid quinone, was investigated by a polyphasic approach to determine their taxonomic position. Sequence analysis of the 16S rRNA gene indicated that strain Mg02T is affiliated to the genus Nocardiopsis, having highest sequence similarity to Nocardiopsis flavescens CGMCC 4.5723T (99.1%) and <98.7% to other species of the genus Nocardiopsis with validly published names. Phylogenetic analysis of 16S rRNA gene indicated strain Mg02T formed a separate evolutionary clade, suggesting that it could be a novel Nocardiopsis species. Phylogenomic analysis showed that strain Mg02T was closely related to N. flavescens CGMCC 4.5723T and distinct from the latter according to the clustering patterns. The Average Nucleotide Identity and digital DNA-DNA hybridization values between strain Mg02T and N. flavescens CGMCC 4.5723T were far below the species-level thresholds. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, we think that strain Mg02T should represent a novel Nocardiopsis species, for which the name Nocardiopsis changdeensis sp. nov. is proposed. The type strain is Mg02T (=MCCC 1K06174T = JCM 34709T).
Asunto(s)
Actinobacteria , Actinomycetales , Eucommiaceae , Actinobacteria/genética , Actinobacteria/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Ácidos Grasos/química , Nocardiopsis/metabolismo , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , China , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/química , Técnicas de Tipificación Bacteriana , Vitamina K 2/químicaRESUMEN
Antarctic krill (Euphausia superba) of the Euphausiidae family comprise one of the largest biomasses in the world and play a key role in the Antarctic marine ecosystem. However, the study of E. superba-derived microbes and their secondary metabolites has been limited. Chemical investigation of the secondary metabolites of the actinomycetes Nocardiopsis sp. LX-1 (in the family of Nocardiopsaceae), isolated from E. superba, combined with molecular networking, led to the identification of 16 compounds a-p (purple nodes in the molecular network) and the isolation of one new pyrroline, nocarpyrroline A (1), along with 11 known compounds 2-12. The structure of the new compound 1 was elucidated by extensive spectroscopic investigation. Compound 2 exhibited broad-spectrum antibacterial activities against A. hydrophila, D. chrysanthemi, C. terrigena, X. citri pv. malvacearum and antifungal activity against C. albicans in a conventional broth dilution assay. The positive control was ciprofloxacin with the MIC values of <0.024 µM, 0.39 µM, 0.39 µM, 0.39 µM, and 0.20 µM, respectively. Compound 1 and compounds 7, 10, and 11 displayed antifungal activities against F. fujikuroi and D. citri, respectively, in modified agar diffusion test. Prochloraz was used as positive control and showed the inhibition zone radius of 17 mm and 15 mm against F. fujikuroi and D. citri, respectively. All the annotated compounds a-p by molecular networking were first discovered from the genus Nocardiopsis. Nocarpyrroline A (1) features an unprecedented 4,5-dihydro-pyrrole-2-carbonitrile substructure, and it is the first pyrroline isolated from the genus Nocardiopsis. This study further demonstrated the guiding significance of molecular networking in the research of microbial secondary metabolites.
Asunto(s)
Actinobacteria , Euphausiacea , Animales , Nocardiopsis , Euphausiacea/química , Actinomyces , Antifúngicos , Ecosistema , Pirroles , Regiones AntárticasRESUMEN
Lipid-lowering is one of the most effective methods of prevention and treatment for cardiovascular diseases. However, most clinical lipid-lowering drugs have adverse effects and cannot achieve the desired efficacy in some complex hyperlipidemia patients, so it is of great significance to develop safe and effective novel lipid-lowering drugs. In the course of our project aimed at discovering the chemical novelty and bioactive natural products of marine-derived actinomycetes, we found that the organic crude extracts (OCEs) of Nocardiopsis sp. ZHD001 exhibited strong in vivo efficacies in reducing weight gain, lowering LDL-C, TC, and TG levels, and improving HDL-C levels in high-fat-diet-fed mice models. Chemical investigations of the active OCEs led to identifying two new sphydrofuran-derived compounds (1-2) and one known 2-methyl-4-(1-glycerol)-furan (3). Their structures were elucidated by the analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and ECD calculations. Among these compounds, compound 1 represents a novel rearranged sphydrofuran-derived derivative. Bioactivity evaluations of these pure compounds showed that all the compounds exhibited significant lipid-lowering activity with lower cytotoxicity in vitro compared to simvastatin. Our results demonstrate that sphydrofuran-derived derivatives might be promising candidates for lipid-lowering drugs.
Asunto(s)
Glicerol , Nocardiopsis , Ratones , Animales , Hipolipemiantes/uso terapéutico , Extractos Vegetales/química , LípidosRESUMEN
Microorganisms associated with marine invertebrates consider an important source of bioactive products. This study aimed to screen for antimicrobial and anticancer activity of crude extracts of bacteria associated with Red sea nudibranchs and molecular identification of the bioactive isolates using 16Sr RNA sequencing, in addition to whole-genome sequencing of one of the most bioactive bacteria. This study showed that bacteria associated with Red sea nudibranchs are highly bioactive and 16Sr RNA sequencing results showed that two isolates belonged to Firmicutes, and two isolates belonged to Proteobacteria, and Actinobacteria. The whole genome sequence data of the isolated Nocardiopsis RACA4 isolate has an estimated genome length of 6,721,839 bp and the taxonomy showed it belongs to the bacteria Nocardiopsis dassonvillei. The De novo assembly of RACA-4 paired reads using Unicycler v0.4.8 initially yielded 97 contigs with an N50 value of 214,568 bp and L50 value of 10, The resulting assembly was further mapped to the reference genome Nocardiopsis dassonvillei strain NCTC10488 using RagTag software v.2.1.0 and a final genome assembly resulted in 39 contigs and N50 value of 6,726,007 and L50 of 1. Genome mining using anti-smash showed around 9.1% of the genome occupied with genes related to secondary metabolites biosynthesis. A wide variety of secondary metabolites belonging to Polyketides, Terpenes, and nonribosomal peptides were predicted with high degree of similarity to known compounds. Non-characterized clusters were also found which suggest new natural compounds discovered by further studies.
Asunto(s)
Actinobacteria , Bacterias , Océano Índico , Bacterias/genética , Actinobacteria/genética , NocardiopsisRESUMEN
Actinobacteria have traditionally been an important source of bioactive natural products, although many genera remain poorly explored. Here, we report a group of distinctive pyrrole-containing natural products, named synnepyrroles, from Nocardiopsis synnemataformans. Detailed structural characterization by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy combined with isotope-labeling experiments revealed their molecular structures and biosynthetic precursors acetate, propionate, aspartate, and (for branched analogues) valine. The biosynthetic data points toward an unusual pathway for pyrrole formation via condensation of aspartate with diverse fatty acids that give rise to a unique pyrrole-3,4-dicarboxylate core and variable linear or terminally branched alkyl side chains. In addition, the bioactivity and mode of action of synnepyrrole A were characterized in Bacillus subtilis. Orienting assessment of the phenotype of synnepyrrole A-treated bacteria by high-resolution microscopy suggested the cytoplasmic membrane as the target structure. Further characterization of the membrane effects demonstrated dissipation of the membrane potential and intracellular acidification indicative of protonophore activity. At slightly higher concentrations, synnepyrrole A compromised the barrier function of the cytoplasmic membrane, allowing the passage of otherwise membrane-impermeable dye molecules.
Asunto(s)
Productos Biológicos , Nocardiopsis , Humanos , Ácido Aspártico , Propionatos , Antibacterianos/química , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Pirroles , Valina , IsótoposRESUMEN
A new Nocardiopsis species that degrades polylactic acid (PLA) was isolated from pig dung-based compost from a municipal composting facility in Japan. To obtain strains capable of efficient PLA degradation, the effect of non-enzymatic degradation of PLA was minimized by maintaining the temperature at or below 37 °C. Screening 15 animal waste-based compost samples, consisting of pig dung, cow dung, horse dung, or chicken droppings, revealed that compost derived from pig dung was most efficient for degradation of PLA films. Hence, pig waste-based compost was used to isolate PLA-degrading microorganisms by screening for PLA-degrading microorganisms in compost using an agar plate-based method in which an emulsifier was omitted to avoid selecting strains that assimilated the emulsifier instead of PLA in the medium. Repeated enrichment obtained six strains. The one that exhibited stable PLA degradation on agar plates was subjected to genomic analysis and identified as Nocardiopsis chromatogenes, an actinomycete.
Asunto(s)
Compostaje , Agar , Animales , Bovinos , Femenino , Caballos , Nocardiopsis , Poliésteres , Suelo , PorcinosRESUMEN
A novel actinobacterium, designated strain HDS12T, was isolated from fruits collected from Changde city located in the northwest of Hunan Province, China and characterized using a polyphasic approach. The 16S rRNA gene sequence analysis indicated that strain HDS12T belonged to the genus Nocardiopsis, and had highest similarities to N. dassonvillei subsp. dassonvillei CGMCC 4.1231T (99.79%), N. deserti H13T (99.73%), N. alborubida NBRC 13392T (99.66%), N. dassonvillei subsp. crassaminis D1T (99.64%), N. synnemataformans DSM 44143T (99.45%), N. lucentensis DSM 44048T (99.04%), N. aegyptia DSM 44442T (98.90%), N. flavescens CGMCC 4.5723T (98.76%), N. alba DSM 43377T (98.69%) and N. halotolerans DSM 44410T (98.63%), respectively. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain HDS12T formed an independent subclade, suggesting that strain HDS12T could belong to a potential novel species. Phylogenomic analysis demonstrated that strain HDS12T was closely related to N. dassonvillei subsp. dassonvillei CGMCC 4.1231T and N. dassonvillei subsp. crassaminis D1T. However, the average nucleotide identity value and the digital DNA-DNA hybridization value between them were well below 95-96% and 70% cut-off point recommended for delineating species. Based on its phenotypic and chemotaxonomic characteristics, strain HDS12T (= MCCC 1K06173T = JCM 34708T) represents the type strain of a novel species, for which the name Nocardiopsis akebiae sp. nov. is proposed.
Asunto(s)
Actinobacteria , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Frutas/química , Nocardiopsis , Nucleótidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Exploration of secondary metabolites secreted by new Actinobacteria taxa isolated from unexplored areas, can increase the possibility to obtain new compounds which can be developed into new drugs for the treatment of serious diseases such as hepatitis C. In this context, one actinobacterial strain, CG3, has been selected based on the results of polyphasic characterization, which indicate that it represents a new putative species within the genus Nocardiopsis. Two fractions (F2 and F3), prepared from the culture of strain CG3 in soybean medium, exhibited a pronounced antiviral activity against the HCV strain Luc-Jc1. LC-HRESIMS analysis showed different bioactive compounds in both active fractions (F2 and F3), including five polyenic macrolactams (kenalactams A-E), three isoflavone metabolites, along with mitomycin C and one p-phenyl derivative. Furthermore, feeding with 1% of methionine, lysine or alanine as a unique nitrogen source, induced the production of three novel kenalactam derivatives.
Asunto(s)
Actinobacteria , Nocardiopsis , Actinobacteria/genética , Antivirales/farmacología , ADN Bacteriano/metabolismo , Filogenia , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Microbiología del SueloRESUMEN
The present study aimed to isolate and identify potential drugs from marine actinomycete Nocardiopsis exhalans and screen them for biomedical applications. The cell-free culture of N. exhalans was extracted with ethyl acetate and the solvent extract showed six fractions in thin-layer chromatography. The fractions were subjected to column chromatography for purification and evaluated for activity against human clinical pathogens. Fraction 4 showed significant activity and was identified as N-(2-hydroxyphenyl)-2-phenazinamine (NHP) using spectral analyses. Further, NHP showed excellent biofilm inhibitory activity against human clinical pathogens Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antioxidant activity confirmed that NHP is scavenging the oxidative stress-enhancing molecules. The anti-proliferative activity of NHP against human breast cancer cells showed significant activity at 300 µg/ml and less cytotoxic activity against normal cells. Additionally, the toxicity assessment against zebrafish revealed that NHP does not cause any toxicity in the important organs. The results highlight N. exhalans as a promising candidate for the development of antibiotics with potential therapeutic applications.
Asunto(s)
Antiinfecciosos , Nocardia , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/toxicidad , Antioxidantes/farmacología , Biopelículas , Escherichia coli , Pruebas de Sensibilidad Microbiana , Nocardiopsis , Pez CebraRESUMEN
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Asunto(s)
Actinobacteria , Alcaloides , Productos Biológicos , Policétidos , Actinobacteria/química , Alcaloides/metabolismo , Productos Biológicos/química , Nocardiopsis , Policétidos/químicaRESUMEN
One new angucyclinone derivative, Kanglemycin N (1), and two new biogenetically related α-Pyrones, nocapyrones U-V (2-3), were isolated from a desert-derived Actinomycete Nocardiopsis dassonvillei HDN 154151. Their structures, including absolute configurations, were elucidated by extensive NMR, MS, and ECD analyses. Compound 1 exhibited potent antibacterial activity against Bacillus subtilis, Proteus sp., Vibrio Parahaemolyticus, Escherichia coli and Methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 0.39 µM to 1.56 µM, and notably the effect of 1 against MRSA significantly exceeded the positive control ciprofloxacin. In addition, compound 1 also showed moderate cytotoxic activity against H69AR, MDA-MB-231, ASPC-1 and K562 cell lines, with IC50 values of 10.46, 8.78, 9.28 and 8.61 µM, respectively.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nocardia , Antraquinonas , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nocardiopsis , Pironas/químicaRESUMEN
The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.
Asunto(s)
Celulasa , Celulosa , Frío , Hidrólisis , NocardiopsisRESUMEN
An alkaliphilic actinobacterium, designated VN6-2T, was isolated from marine sediment collected from Valparaíso Bay, Chile. Strain VN6-2T formed yellowish-white branched substrate mycelium without fragmentation. Aerial mycelium was well developed, forming wavy or spiral spore chains. Strain VN6-2T exhibited a 16S rRNA gene sequence similarity of 93.9â% to Salinactinospora qingdaonensis CXB832T, 93.7â% to Murinocardiopsis flavida 14-Be-013T, and 93.7â% to Lipingzhangella halophila 14-Be-013T. Genome sequencing revealed a genome size of 5.9 Mb and an in silico G+C content of 69.3 mol%. Both of the phylogenetic analyses based on 16S rRNA gene sequences and the up-to-date bacterial core gene sequences revealed that strain VN6-2T formed a distinct monophyletic clade within the family Nocardiopsaceae. Chemotaxonomic assessment of strain VN6-2T showed that the major fatty acids were iso-C16â:â0, anteiso-C17â:â0 and 10-methyl-C18â:â0, and the predominant respiratory quinones were MK-9, MK-9(H2) and MK-9(H4). Whole-cell hydrolysates contained meso-diaminopimelic acid as the cell-wall diamino acid, and ribose and xylose as the diagnostic sugars. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, aminophospholipids, glycolipid and phospholipid. Based on the results of this polyphasic study, a novel genus, Spiractinospora gen. nov., is proposed within the family Nocardiopsaceae and the type species Spiractinospora alimapuensis gen. nov., sp. nov. The type strain is VN6-2T (CECT 30026T, CCUG 66258T). On the basis of the phylogenetic results herein, we also propose that Nocardiopsis arvandica and Nocardiopsis litoralis are later heterotypic synonyms of Nocardiopsis sinuspersici and Nocardiopsis kunsanensis, respectively, for which emended descriptions are given.