Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1304603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933269

RESUMEN

Nervous necrosis virus (NNV) is one of the greatest threats to Mediterranean aquaculture, infecting more than 170 fish species and causing mortalities up to 100% in larvae and juveniles of susceptible species. Intensive aquaculture implies stressed conditions that affect the welfare of fish and their ability to fight against infections. In fact, a higher susceptibility to NNV has been related to poor welfare conditions. In order to analyze the physiological link between stressed conditions and increased susceptibility to NNV, as well as its possible role in the pathogenesis of this disease, we reared shi drum (Umbrina cirrosa) juveniles (30.7 ± 3.10 g body weight), which are expected to be asymptomatic upon NNV infection, at three stocking densities (2, 15, and 30 kg/m3) for 27 days and subsequently challenged them with NNV. We firstly characterized the stressed conditions of the specimens before and after infection and recorded the mortalities, demonstrating that stressed specimens reared at 30 kg/m3 suffered mortalities. However, the viral loads in different tissues were similar in all experimental groups, allowing horizontal and vertical transmission of the virus from asymptomatic specimens. All of these data suggest that shi drum tolerates wide ranges of culture densities, although high densities might be a setback for controlling NNV outbreaks in this species. In an attempt to understand the molecular pathways orchestrating this susceptibility change in stressed conditions, we performed a transcriptomic analysis of four tissues under mock- and NNV-infected conditions. In addition to the modification of the exceptive pathways such as cell adhesion, leukocyte migration, cytokine interaction, cell proliferation and survival, and autophagy, we also observed a heavy alteration of the neuroactive ligand-receptor pathway in three of the four tissues analyzed. Our data also point to some of the receptors of this pathway as potential candidates for future pharmacological treatment to avoid the exacerbated immune response that could trigger fish mortalities upon NNV infection.


Asunto(s)
Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Nodaviridae/fisiología , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Susceptibilidad a Enfermedades , Acuicultura , Carga Viral
2.
Virulence ; 15(1): 2355971, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38745468

RESUMEN

The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.


Asunto(s)
Encéfalo , Enfermedades de los Peces , Macrófagos , Nodaviridae , Infecciones por Virus ARN , Animales , Macrófagos/inmunología , Macrófagos/virología , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Encéfalo/virología , Encéfalo/inmunología , Encéfalo/patología , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Quimiocina CXCL11 , Receptores CXCR3/metabolismo , Lubina/inmunología , Lubina/virología , Transducción de Señal , Citocinas/metabolismo , Citocinas/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética
3.
Fish Shellfish Immunol ; 150: 109650, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788912

RESUMEN

Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Nectinas , Nodaviridae , Oryzias , Infecciones por Virus ARN , Animales , Oryzias/genética , Oryzias/inmunología , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/inmunología , Nectinas/genética , Nectinas/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Filogenia , Secuencia de Aminoácidos , Inmunidad Innata/genética , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria
4.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570120

RESUMEN

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Asunto(s)
Lubina , Infecciones por Virus ADN , Elongasas de Ácidos Grasos , Enfermedades de los Peces , Proteínas de Peces , Metabolismo de los Lípidos , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Lubina/inmunología , Lubina/genética , Elongasas de Ácidos Grasos/genética , Nodaviridae/fisiología , Regulación de la Expresión Génica , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Iridovirus/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Reprogramación Metabólica
5.
J Virol Methods ; 327: 114922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556175

RESUMEN

A 2D primary gill cell culture system of the sevenband grouper (Hyporthodus septemfasciatus) was established to validate the pathogenesis of nervous necrosis virus (NNV) as observed in previous studies. This system, developed using the double-seeded insert (DSI) technique, yielded confluent cell layers. Upon challenge with NNV in a setup containing both autoclaved salt water and L15 media in the apical compartment, viral replication akin to that anticipated based on previous studies was observed. Consequently, we advocate for the utilization of primary gill cell culture as a viable alternative to conventional methodologies for investigating host pathogen interactions.


Asunto(s)
Branquias , Nodaviridae , Replicación Viral , Animales , Branquias/virología , Branquias/citología , Nodaviridae/fisiología , Cultivo Primario de Células/métodos , Lubina/virología , Enfermedades de los Peces/virología , Técnicas de Cultivo de Célula/métodos , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Células Cultivadas , Interacciones Huésped-Patógeno
6.
Sci China Life Sci ; 67(4): 733-744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388846

RESUMEN

The origin of T cells in the teleost's brain is unclear. While viewing the central nervous system (CNS) as immune privileged has been widely accepted, previous studies suggest that T cells residing in the thymus but not in the spleen of the teleost play an essential role in communicating with the peripheral organs. Here, we identified nine T cell subpopulations in the thymus and spleen of orange-spotted grouper (Epinephelus coioices) through single-cell RNA-sequencing analysis. After viral CNS infection with red-spotted grouper nervous necrosis virus (RGNNV), the number of slc43a2+ T cells synchronously increased in the spleen and brain. During the infection tests in asplenic zebrafish (tlx1▲ zebrafish model), no increase in the number of slc43a2+ T cells was observed in the brain. Single-cell transcriptomic analysis indicated that slc43a2+ T cells mature and functionally differentiate within the spleen and then migrate into the brain to trigger an immune response. This study suggests a novel route for T cell migration from the spleen to the brain during viral infection in fish.


Asunto(s)
Enfermedades de los Peces , Nodaviridae , Animales , Inmunidad Innata , Bazo , Pez Cebra , Secuencia de Aminoácidos , Alineación de Secuencia , Linfocitos T , Encéfalo , Nodaviridae/fisiología , Proteínas de Peces/genética
7.
Fish Shellfish Immunol ; 146: 109408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307301

RESUMEN

Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Interferón Tipo I , Nodaviridae , Percas , Infecciones por Virus ARN , Animales , Percas/genética , Inmunidad Innata/genética , Filogenia , Enzimas Ubiquitina-Conjugadoras/genética , Cisteína , Proteínas de Peces/química , Interferón Tipo I/genética , Nodaviridae/fisiología , Lubina/genética , Lubina/metabolismo
8.
Fish Shellfish Immunol ; 146: 109424, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311091

RESUMEN

The suppressor of cytokine signaling (SOCS) proteins family have twelve members including eight known mammalian SOCS members (CISH, SOCS1-7) and four new discovery members (SOCS3b, SOCS5b, SOCS8 and SOCS9) that is regarded as a classic feedback inhibitor of cytokine signaling. Although the function of the mammalian SOCS proteins have been well studied, little is known about the roles of SOCS in fish during viral infection. In this study, the molecular characteristics of SOCS9 from orange-spotted grouper (Epinephelus coioides, EcSOCS9) is investigated. The EcSOCS9 protein encoded 543 amino acids with typical SH2 (389-475aa) and SOCS_box (491-527aa), sharing high identities with reported fish SOCS9. EcSOCS9 was expressed in all detected tissues and highly expressed in kidney. After red-spotted grouper nervous necrosis virus (RGNNV) infection, the expression of EcSOCS9 was significantly induced in vitro. Furthermore, EcSOCS9 overexpression enhanced RGNNV replication, promoted virus-induced mitophagy that evidenced by the increased level of LC3-Ⅱ, BCL2, PGAM5 and decreased level of BNIP3 and FUNDC1. Besides, EcSOCS9 overexpression suppressed the expression levels of ATP6, CYB, ND4, ATP level and induced ROS level. The expression levels of interferon (IFN) related factors (IRF1, IRF3, IRF7, P53), inflammatory factors (IL1-ß, IL8, TLR2, TNF-α) and IFN-3, ISRE, NF-κB, AP1 activities were also reduced by overexpressing EcSOCS9. These date suggests that EcSOCS9 impacts RGNNV infection through modulating mitophagy, regulating the expression levels of IFN- related and inflammatory factors, which will expand our understanding of fish immune responses during viral infection.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Virosis , Animales , Inmunidad Innata/genética , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Alineación de Secuencia , Interferones/metabolismo , Proteínas de Peces/química , Nodaviridae/fisiología , Infecciones por Virus ADN/veterinaria , Mamíferos/metabolismo
9.
Fish Shellfish Immunol ; 144: 109295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101589

RESUMEN

The leopard coral grouper (Plectropomus leopardus), which has become increasingly popular in consumption due to its bright body color and great nutritional, holds a high economic and breeding potential. However, in recent years, the P.leopardus aquaculture industry has been impeded by the nervous necrosis virus (NNV) outbreak, leading to widespread mortality among fry and juvenile grouper. However, the genetic basis of resistance to NNV in P. leopardus remains to be investigated. In the present study, we conducted a genome-wide association analysis (GWAS) on 100 resistant and 100 susceptible samples to discover variants and potential genes linked with NNV resistance. For this study, 157,926 high-quality single nucleotide polymorphisms (SNPs) based on whole genome resequencing were discovered, and eighteen SNPs loci linked to disease resistance were discovered. We annotated six relevant candidate genes, including sik2, herc2, pip5k1c, npr1, mybpc3, and arhgap9, which showed important roles in lipid metabolism, oxidative stress, and neuronal survival. In the brain tissues of resistant and susceptible groups, candidate genes against NNV infection showed significant differential expression. The results indicate that regulating neuronal survival or pathways involved in lipid metabolism may result in increased resistance to NNV. Understanding the molecular mechanisms that lead to NNV resistance will be beneficial for the growth of the P. leopardus breeding sector. Additionally, the identified SNPs could be employed as biomarkers of disease resistance in P. leopardus, which will facilitate the selective breeding of grouper.


Asunto(s)
Antozoos , Lubina , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/genética , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Resistencia a la Enfermedad/genética , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria
10.
Dev Comp Immunol ; 152: 105124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145864

RESUMEN

Cell-mediated cytotoxicity (CMC) is essential in eradicating virus-infected cells, involving CD8+ T lymphocytes (CTLs) and natural killer (NK) cells, through the activation of different pathways. This immune response is well-studied in mammals but scarcely in teleost fish. Our aim was to investigate the adaptive CMC using head-kidney (HK) cells from European sea bass infected at different times with nodavirus (NNV), as effector cells, and the European sea bass brain cell line (DLB-1) infected with different NNV genotypes, as target cells. Results showed low and unaltered innate cytotoxic activity through the infection time. However, adaptive CMC against RGNNV and SJNNV/RGNNV-infected target cells increased from 7 to 30 days post-infection, peaking at 15 days, demonstrating the specificity of the cytotoxic activity and suggesting the involvement of CTLs. At transcriptomic level, we observed up-regulation of genes related to T cell activation, perforin/granzyme and Fas/FasL effector pathways as well as apoptotic cell death. Further studies are necessary to understand the adaptive role of European sea bass CTLs in the elimination of NNV-infected cells.


Asunto(s)
Antineoplásicos , Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Nodaviridae/fisiología , Inmunidad Innata , Expresión Génica , Riñón , Mamíferos/genética
11.
Fish Shellfish Immunol ; 145: 109345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154761

RESUMEN

Type I interferon (IFN) plays a crucial role in the antiviral immune response. Nervous necrosis virus (NNV) and Micropterus salmoides rhabdovirus (MSRV) are the most important viruses in cultured larvae and juveniles, causing great economic losses to fish farming. To better understand the antiviral activities and immunoregulatory role of IFN from orange-spotted grouper (Epinephelus coioides), EcIFNh was cloned from NNV infected sample. EcIFNh has an open reading frame (ORF) of 552 bp and encodes a polypeptide of 183 amino acids. Phylogenetic tree analysis showed that EcIFNh was clustered into the IFNh branch. The tissue distribution analysis revealed that EcIFNh was highly expressed in the liver and brain of healthy orange-spotted grouper. The mRNA levels of EcIFNh were significantly upregulated after poly (I:C) stimulation and NNV or MSRV infection. Furthermore, the promoter of EcIFNh was characterized and significantly activated by EcMDA5, EcMAVS, EcSTING, EcIRF3, and EcIRF7 in the luciferase activity assays. We found that EcIFNh overexpression resisted the replication of NNV and MSRV, while EcIFNh silencing facilitated NNV replication in GB cells. In addition, EcIFNh recombinant protein (rEcIFNh) enhanced the immune response by inducing the expression of ISGs in vivo and in vitro, suggesting the potential application of rEcIFNh for anti-NNV and anti-MSRV. Taken together, our research may offer the foundation for virus-IFN system interaction in orange-spotted grouper.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Rhabdoviridae , Animales , Filogenia , Proteínas de Peces/genética , Poli I-C/farmacología , Necrosis , Nodaviridae/fisiología , Inmunidad Innata
12.
Fish Shellfish Immunol ; 143: 109136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839541

RESUMEN

Rab1, a GTPase, is present in all eukaryotes, and is mainly involved in vesicle trafficking between the endoplasmic reticulum and Golgi, thereby regulating many cellular activities and pathogenic infections. However, little is known of how Rab1 functions in fish during virus infection. Groupers (Epinephelus spp.) are high in economic value and widely cultivated in China and Southeast Asia, although they often suffer from diseases. Red-spotted grouper nervous necrosis virus (RGNNV), a highly pathogenic RNA virus, is a major pathogen in cultured groupers, and causes huge economic losses. A series of host cellular proteins involved in RGNNV infection was identified. However, the impact of Rab1 on RGNNV infection has not yet been reported. In this study, a novel Rab1 homolog (EcRab1) from Epinephelus coioides was cloned, and its roles during virus infection and host immune responses were investigated. EcRab1 encoded a 202 amino acid polypeptide, showing 98% and 78% identity to Epinephelus lanceolatus and Homo sapiens, respectively. After challenge with RGNNV or poly(I:C), the transcription of EcRab1 was altered both in vitro and in vivo, implying that EcRab1 was involved in virus infection. Subcellular localization showed that EcRab1 was displayed as punctate structures in the cytoplasm, which was affected by EcRab1 mutants. The dominant negative (DN) EcRab1, enabling EcRab1 to remain in the GDP-binding state, caused EcRab1 to be diffusely distributed in the cytoplasm. Constitutively active (CA) EcRab1, enabling EcRab1 to remain in the GTP-binding state, induced larger cluster structures of EcRab1. During the late stage of RGNNV infection, some EcRab1 co-localized with RGNNV, and the size of EcRab1 clusters was enlarged. Importantly, overexpression of EcRab1 significantly inhibited RGNNV infection, and knockdown of EcRab1 promoted RGNNV infection. Furthermore, EcRab1 inhibited the entry of RGNNV to host cells. Compared with EcRab1, overexpression of DN EcRab1 or CA EcRab1 also promoted RGNNV infection, suggesting that EcRab1 regulated RGNNV infection, depending on the cycles of GTP- and GDP-binding states. In addition, EcRab1 positively regulated interferon (IFN) immune and inflammatory responses. Taken together, these results suggest that EcRab1 affects RGNNV infection, possibly by regulating host immunity. Our study furthers the understanding of Rab1 function during virus infection, thus helping to design new antiviral strategies.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Inmunidad Innata/genética , Internalización del Virus , Proteínas de Peces/química , Guanosina Trifosfato , Nodaviridae/fisiología
13.
Fish Shellfish Immunol ; 140: 108993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37573969

RESUMEN

Methylation at the N6 position of adenosine (m6A) is the most abundant internal mRNA modification in eukaryotes, tightly associating with regulation of viral life circles and immune responses. Here, a methyltransferase-like 3 homolog gene from sea perch (Lateolabrax japonicus), designated LjMETTL3, was cloned and characterized, and its negative role in fish virus pathogenesis was uncovered. The cDNA of LjMETTL3 encoded a 601-amino acid protein with a MT-A70 domain, which shared the closest genetic relationship with Echeneis naucrates METTL3. Spatial expression analysis revealed that LjMETTL3 was more abundant in the immune tissues of sea perch post red spotted grouper nervous necrosis virus (RGNNV) or viral hemorrhagic septicemia virus (VHSV) infection. LjMETTL3 expression was significantly upregulated at 12 and 24 h post RGNNV and VHSV infection in vitro. In addition, ectopic expression of LjMETTL3 inhibited RGNNV and VHSV infection in LJB cells at 12 and 24 h post infection, whereas knockdown of LjMETTL3 led to opposite effects. Furthermore, we found that LjMETTL3 may participate in boosting the type I interferon responses by interacting with TANK-binding kinase. Taken together, these results disclosed the antiviral role of fish METTL3 against RGNNV and VHSV and provided evidence for understanding the potential mechanisms of fish METTL3 in antiviral innate immunity.


Asunto(s)
Lubina , Enfermedades de los Peces , Interferón Tipo I , Nodaviridae , Novirhabdovirus , Percas , Infecciones por Virus ARN , Animales , Lubina/genética , Lubina/metabolismo , Interferón Tipo I/genética , Inmunidad Innata/genética , Nodaviridae/fisiología , Metiltransferasas , Antivirales , Necrosis , Proteínas de Peces/química
14.
Fish Shellfish Immunol ; 137: 108771, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100308

RESUMEN

Annexin A2 (AnxA2) is ubiquitous in vertebrates and has been identified as a multifunctional protein participating in a series of biological processes, such as endocytosis, exocytosis, signal transduction, transcription regulation, and immune responses. However, the function of AnxA2 in fish during virus infection still remains unknown. In this study, we identified and characterized AnxA2 (EcAnxA2) in Epinephelus coioides. EcAnxA2 encoded a 338 amino acids protein with four identical annexin superfamily conserved domains, which shared high identity with other AnxA2 of different species. EcAnxA2 was widely expressed in different tissues of healthy groupers, and its expression was significantly increased in grouper spleen cells infected with red-spotted grouper nervous necrosis virus (RGNNV). Subcellular locatio n analyses showed that EcAnxA2 diffusely distributed in the cytoplasm. After RGNNV infection, the spatial distribution of EcAnxA2 was unaltered, and a few EcAnxA2 co-localized with RGNNV during the late stage of infection. Furthermore, overexpression of EcAnxA2 significantly increased RGNNV infection, and knockdown of EcAnxA2 reduced RGNNV infection. In addition, overexpressed EcAnxA2 reduced the transcription of interferon (IFN)-related and inflammatory factors, including IFN regulatory factor 7 (IRF7), IFN stimulating gene 15 (ISG15), melanoma differentiation related gene 5 (MDA5), MAX interactor 1 (Mxi1) laboratory of genetics and physiology 2 (LGP2), IFN induced 35 kDa protein (IFP35), tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin 6 (IL-6). The transcription of these genes was up-regulated when EcAnxA2 was inhibited by siRNA. Taken together, our results showed that EcAnxA2 affected RGNNV infection by down-regulating the host immune response in groupers, which provided new insights into the roles of AnxA2 in fish during virus infection.


Asunto(s)
Anexina A2 , Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Inmunidad Innata/genética , Anexina A2/genética , Anexina A2/metabolismo , Secuencia de Aminoácidos , Alineación de Secuencia , Proteínas de Peces/química , Nodaviridae/fisiología
15.
Fish Shellfish Immunol ; 136: 108709, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972841

RESUMEN

Nervous necrosis virus (NNV) is one of the most important fish viral pathogens infecting more than 120 fish species worldwide. Due to the mass mortality rates often seen among larvae and juveniles, few effective vaccines against NNV were developed up to now. Here, the protective effect of recombinant coat protein (CP) from red-spotted grouper nervous necrosis virus (RGNNV) fused with grouper ß-defensin (DEFB) as an oral vaccine was evaluated using Artemia as a biocarrier delivery system in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Feeding with Artemia encapsulated with E. coli expressing control vector (control group), CP, or CP-DEFB showed no obvious side effects on the growth of groupers. ELISA and antibody neutralization assay showed that CP-DEFB oral vaccination group induced higher anti-RGNNV CP specific antibodies and exhibited higher neutralization potency than the CP and control group. Meanwhile, the expression levels of several immune and inflammatory factors in the spleen and kidney after feeding with CP-DEFB were also significantly increased compared with the CP group. Consistently, after challenge with RGNNV, groupers fed CP-DEFB and CP exhibited 100% and 88.23% relative percentage survival (RPS), respectively. Moreover, the lower transcription levels of viral genes and milder pathological changes in CP-DEFB group were detected compared with the CP and control group. Thus, we proposed that grouper ß-defensin functioned as an efficient molecular adjuvant for an improved oral vaccine against nervous necrosis virus infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Vacunas Virales , beta-Defensinas , Animales , beta-Defensinas/genética , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Escherichia coli , Adyuvantes Inmunológicos/farmacología , Proteínas Recombinantes , Nodaviridae/fisiología , Necrosis , Proteínas de Peces/genética
16.
Fish Shellfish Immunol ; 134: 108578, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740084

RESUMEN

Nervous necrosis virus (NNV) could infect more than 200 fish species worldwide, with almost 100% mortality in affected larvae and juvenile fish. Among different genotypes of NNV, the red-grouper nervous necrosis virus (RGNNV) genotype is the most widely reported with the highest number of susceptible species. Interferon (IFN) is a crucial antiviral cytokine and RGNNV needs to develop some efficient strategies to resist host IFN-stimulated antiviral immune. Although considerable researches on RGNNV, whether RGNNV B1 protein participates in regulating the host's IFN response remains unknown. Here, we reported that B1 protein acted as a transcript inhibition factor to suppress fish IFN production. We firstly found that ectopic expression of B1 protein significantly decreased IFN and IFN-stimulated genes (ISGs) mRNA levels and IFNφ1 promoter activity induced by polyinosinic:polycytidylic acid [poly (I:C)]. Further studies showed that B1 protein inhibited the IFNφ1 promoter activity stimulated by the key RIG-I-like receptors (RLRs) factors, including MDA5, MAVS, TBK1, IRF3, and IRF7 and decreased their protein levels. Moreover, B1 protein significantly inhibited the activity of constitutively active cytomegalovirus (CMV) promoter, which suggested that B1 protein was a transcription inhibitor. Western blot indicated that B1 protein decreased the Ser5 phosphorylation of RNA polymerase II (RNAP II) C-terminal domain (CTD). Together, our data demonstrated that RGNNV B1 protein was a host transcript antagonist, which intervened RNAP II Ser5-phosphorylation, inhibiting host IFN response and facilitating RGNNV replication.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Inmunidad Innata/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Regulación de la Expresión Génica , Proteínas de Peces/genética , Secuencia de Aminoácidos , Alineación de Secuencia , Antivirales , Poli I-C/farmacología , Replicación Viral , Necrosis , Nodaviridae/fisiología
17.
J Virol ; 97(1): e0174822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633407

RESUMEN

Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/virología , Proteínas de la Cápside/metabolismo , Epítopos de Linfocito B/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Epítopos Inmunodominantes , Necrosis , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología
18.
Fish Shellfish Immunol ; 132: 108490, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509415

RESUMEN

Beclin-1, the mammalian ortholog of the yeast autophagy-related gene 6 (Atg 6), is a key regulator of autophagy. A variety of health and disease conditions in mammals are intricately related to the broad spectrum of beclin-1 functions. Nevertheless, few studies have investigated the role of beclin-1 in fish. In this study, we identified and cloned the beclin-1 cDNA (EaBECN-1) of Epinephelus akaara (red-spotted grouper) and carried out in silico analysis, tissue-specific expression analysis, immune challenge experiment, and in vitro analysis of its roles against viral infection and oxidative stress. The open reading frame was 1344 bp long and encoded 447 amino acids with a molecular weight of 51.2 kDa. Beclin-1 consisted of a conserved N-terminal BH3 and APG6 domains, and shared more than 88% identity with other vertebrates, according to a pairwise sequence alignment. EaBECN-1 expression profile analysis in E. akaara revealed that it is mostly expressed in the blood. Moreover, transcriptional modulation of EaBECN-1 was observed following stimulation with lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly (I:C)), and nervous necrosis virus. During the viral hemorrhagic septicemia virus challenge, increased viral gene expression was observed at 12 h post-infection in FHM cells ectopically expressing EaBECN-1, and decreased thereafter at 24 h post-infection compared to control cells. However, increased antiviral gene expression at 12 and 24 h confirmed the antiviral function of EaBECN-1. Furthermore, EaBECN-1 overexpression protected the cells against H2O2-mediated apoptosis, as evidenced by the MTT assay, analysis of mRNA expression levels of apoptotic genes, and AO-EtBr staining. Overall, our study demonstrated the protective role of EaBECN-1 against viral pathogenesis and oxidative stress through autophagy, increasing our understanding of the role of beclin-1 in fish.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Animales , Beclina-1/genética , Beclina-1/química , Secuencia de Aminoácidos , Secuencia de Bases , Peróxido de Hidrógeno/metabolismo , Antivirales/metabolismo , Estrés Oxidativo , Proteínas de Peces/química , Filogenia , Nodaviridae/fisiología , Mamíferos/metabolismo
19.
Fish Shellfish Immunol ; 132: 108474, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481289

RESUMEN

It has been established that baculovirus-insect cell line is applicable for shrimp virus replication, propagation and secretion in the in vitro culture system. We thus aimed to produce Macrobrachium rosenbergii nodavirus (MrNV) clone within S2 cell to improve viral production over the previous model using Sf9 cell. Upon the transfection of genomic RNA1 and RNA2 into S2 cells, the recognizable cellular changes including cytoplasmic swelling and clumping of cells were observed within 24 h. The culture media containing secreted MrNV particles were re-transfected into healthy S2 cells and similar cellular changes as with the first transfection were observed. Immunohistochemistry analysis of the re-infecting S2 cell revealed an intense immunoreactivity against MrNV capsid protein confirming that S2 cell was permissive cells for MrNV. In vivo infectivity test using P. merguiensis as a model animal exposed to the secreted MrNV revealed the presence of RNA2 fragment in shrimp tissue accompanied with the sign of whitish abdominal muscle at 24 h post-infection (p.i.). In addition, the number of shrimp hemocytes decreased at 6-24 h p.i. and returned to the normal level at 48 h p.i., whereas a significant up-regulation of immune-related genes including HSP70 and trypsin was noted. These data suggested that rescued MrNV produced in S2 is practically useful for MrNV infection test in which their natural virion inoculae are difficult to obtain. In addition, the molecular basis of viral pathogenesis can further be investigated which should be beneficial for any antiviral therapy developments in the future.


Asunto(s)
Nodaviridae , Palaemonidae , Penaeidae , Animales , Drosophila melanogaster , Palaemonidae/genética , Virulencia , Proteínas de la Cápside , Nodaviridae/fisiología
20.
Fish Shellfish Immunol ; 131: 898-907, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334701

RESUMEN

Changes in the thermal optima of fish impacts changes in the physiology and immune response associated with infections. The present study showed that at suboptimal temperatures (17 °C), the host tries to evade viral infection by downregulating the inflammatory response through enhanced neuronal protection. There was significantly less abundance of IgM + B cells in the 17 °C group compared to that in the 25 °C group. An increased macrophage population (Iba1+) during the survival phase in fish challenged at 25 °C demonstrated inflammation. Optimal temperature challenge activated virus-induced senescence in brain cells, demonstrated with a heterochromatin-associated H3K9me3 histone mark. There was an abundant expression of anti-inflammatory cytokines in the brain of fish at the suboptimal challenge. Besides the cytokines, the expression of BDNF was significantly higher in the suboptimally challenged group, suggesting that its neuronal protection activity following NNV infection is mediated through TGFß. The suboptimal challenge resulted in H3k9ac displaying transcriptional competency, activation of trained immunity H3K4me3, and enrichment of H3 histone-lysine-4 monomethylation (H3K4me1), resulting in a robust re-stimulatory immune response. The observations from the H4 modifications showed that besides H4K12ac and H4K20m3, all the assayed modifications were significantly higher in suboptimal convalescent fishes. The suboptimally challenged fish acquired more methylation along cytosine residues than the optimally infected fish. Together, these observations suggest that optimal temperature results in an immune priming effect, whereas the protection enabled in suboptimal convalescent fishes is operated through epigenetically controlled trained immune functions.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Virosis , Animales , Lubina/metabolismo , Temperatura , Antivirales , Nodaviridae/fisiología , Epigénesis Genética , Citocinas/metabolismo , Necrosis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...