Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273104

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Nodo Sinoatrial , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Humanos , Nodo Sinoatrial/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Arritmias Cardíacas/terapia , Arritmias Cardíacas/patología
2.
Sci Rep ; 14(1): 14041, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890395

RESUMEN

The sinus node (SN) serves as the primary pacemaker of the heart and is the first component of the cardiac conduction system. Due to its anatomical properties and sample scarcity, the cellular composition of the human SN has been historically challenging to study. Here, we employed a novel deep learning deconvolution method, namely Bulk2space, to characterise the cellular heterogeneity of the human SN using existing single-cell datasets of non-human species. As a proof of principle, we used Bulk2Space to profile the cells of the bulk human right atrium using publicly available mouse scRNA-Seq data as a reference. 18 human cell populations were identified, with cardiac myocytes being the most abundant. Each identified cell population correlated to its published experimental counterpart. Subsequently, we applied the deconvolution to the bulk transcriptome of the human SN and identified 11 cell populations, including a population of pacemaker cardiomyocytes expressing pacemaking ion channels (HCN1, HCN4, CACNA1D) and transcription factors (SHOX2 and TBX3). The connective tissue of the SN was characterised by adipocyte and fibroblast populations, as well as key immune cells. Our work unravelled the unique single cell composition of the human SN by leveraging the power of a novel machine learning method.


Asunto(s)
Miocitos Cardíacos , Análisis de la Célula Individual , Nodo Sinoatrial , Humanos , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Análisis de la Célula Individual/métodos , Ratones , Animales , Inteligencia Artificial , Transcriptoma , Atrios Cardíacos/metabolismo , Atrios Cardíacos/citología , Aprendizaje Profundo
3.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928314

RESUMEN

A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Embrión de Pollo , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/citología , Transducción de Señal , Corazón/embriología , Corazón/fisiología
4.
In Vitro Cell Dev Biol Anim ; 60(7): 815-823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898365

RESUMEN

Sinoatrial node (SAN) is the pacemaker of the heart in charge of initiating spontaneous electronical activity and controlling heart rate. Myocytes from SAN can generate spontaneous rhythmic action potentials, which propagate through the myocardium, thereby triggering cardiac myocyte contraction. Acutely, the method for isolating sinoatrial node myocytes (SAMs) is critical in studying the protein expression and function of myocytes in SAN. Currently, the SAMs were isolated by transferring SAN tissue directly into the digestion solution, but it is difficult to judge the degree of digestion, and the system was unstable. Here, we present a modified protocol for the isolation of SAMs in mice, based on the collagenase II and protease perfusion of the heart using a Langendorff apparatus and subsequent dissociation of SAMs. The appearance and droplet flow rate of the heart could be significantly changed during enzymatic digestion via perfusion, which allowed us to easily judge the degree of digestion and avoid incomplete or excessive digestion. The SAMs with stable yield and viability achieved from our optimized approach would facilitate the follow-up experiments.


Asunto(s)
Separación Celular , Miocitos Cardíacos , Nodo Sinoatrial , Animales , Nodo Sinoatrial/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Separación Celular/métodos , Ratones , Ratones Endogámicos C57BL , Masculino , Perfusión
5.
Dev Dyn ; 253(10): 895-905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38459937

RESUMEN

BACKGROUND: Maturation of the mouse is accompanied by the increase in heart rate. However, the mechanisms underlying this process remain unclear. We performed an action potentials (APs) recordings in mouse sinoatrial node (SAN) true pacemaker cells and in silico analysis to clarify the mechanisms underlying pre-postnatal period heart rate changes. RESULTS: The APs of true pacemaker cells at different stages had similar configurations and dV/dtmax values. The cycle length, action potential duration (APD90), maximal diastolic potential (MDP), and AP amplitude decreased, meanwhile the velocity of diastolic depolarization (DDR) increased from E12.5 stage to adult. Using a pharmacological approach we found that in SAN true pacemaker cells ivabradine reduces the DDR and the cycle length significantly stronger in E12.5 than in newborn and adult mice, whereas the effects of Ni2+ and nifedipine were significantly stronger in adult mice. Computer simulations further suggested that the density of the hyperpolarization-activated pacemaker сurrent (If) decreased during development, whereas transmembrane and intracellular Ca2+ flows increased. CONCLUSIONS: The ontogenetic decrease in IK1 density from E12.5 to adult leads to depolarization of MDP to the voltage range in which calcium currents are activated, thereby shifting the balance from the "membrane-clock" to the "calcium-clock."


Asunto(s)
Potenciales de Acción , Simulación por Computador , Nodo Sinoatrial , Animales , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Ratones , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Ivabradina/farmacología , Nifedipino/farmacología , Calcio/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de los fármacos , Benzazepinas/farmacología
6.
Nature ; 619(7971): 801-810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438528

RESUMEN

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Asunto(s)
Microambiente Celular , Corazón , Multiómica , Miocardio , Humanos , Comunicación Celular , Fibroblastos/citología , Ácido Glutámico/metabolismo , Corazón/anatomía & histología , Corazón/inervación , Canales Iónicos/metabolismo , Miocardio/citología , Miocardio/inmunología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Neuroglía/citología , Pericardio/citología , Pericardio/inmunología , Células Plasmáticas/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Nodo Sinoatrial/anatomía & histología , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Sistema de Conducción Cardíaco/anatomía & histología , Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/metabolismo
7.
Phytomedicine ; 108: 154502, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36274412

RESUMEN

BACKGROUND: TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE: The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS: Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on ß-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS: Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by ß-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of ß-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION: Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.


Asunto(s)
Medicamentos Herbarios Chinos , Sirtuina 1 , Tubulina (Proteína) , Humanos , Hipoxia , Mitocondrias , Quercetina/farmacología , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Sirtuina 1/metabolismo , Tubulina (Proteína)/metabolismo , Medicamentos Herbarios Chinos/farmacología
8.
J Mol Cell Cardiol ; 164: 42-50, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34826768

RESUMEN

Roles of mitochondria in sinoatrial nodal cells (SANCs) have not been fully clarified. We have previously demonstrated that mitochondrial Ca2+ efflux through the Na+-Ca2+ exchanger, NCXm, modulates sarcoplasmic reticulum (SR) Ca2+ content and automaticity of HL-1 cardiomyocytes. In this study, we extended this line of investigation to clarify the spatial and functional association between mitochondria and local calcium release (LCR) from the SR in murine SANCs. High-speed two dimensional (2D) and confocal line-scan imaging of SANCs revealed that LCRs in the early phase of the Ca2+ transient cycle length (CL) appeared with a higher probability near mitochondria. Although LCR increased toward the late phase of CL, no significant difference was noted in the occurrence of late LCRs near and distant from mitochondria. LCRs, especially in the late phase of CL, induced temporal and spatial heterogeneity of the Ca2+ transient amplitude. Attenuating mitochondrial Ca2+ efflux using an NCXm inhibitor, CGP-37157 (1 µM), reduced the amplitude, duration and size of LCR. It also attenuated early LCR occurrence, and simultaneously prolonged LCR period and CL. Additionally, CGP-37157 reduced caffeine-induced Ca2+ transient. Therefore, the inhibitory effect on LCR was attributable to the reduction of the SR Ca2+ content through NCXm inhibition. No obvious off-target effects of 1 µM CGP-37157 were found on T- and L-type voltage-gated Ca2+ currents and hyperpolarization-activated inward current. Taken together, these results suggest that mitochondria are involved in LCR generation by modulating the SR Ca2+ content through NCXm-mediated Ca2+ efflux in murine SANCs.


Asunto(s)
Calcio , Mitocondrias , Nodo Sinoatrial , Potenciales de Acción , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
10.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831329

RESUMEN

Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2-3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR's characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.


Asunto(s)
Relojes Biológicos , Fosfoproteínas Fosfatasas/metabolismo , Nodo Sinoatrial/citología , Potenciales de Acción/efectos de los fármacos , Animales , Relojes Biológicos/efectos de los fármacos , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Simulación por Computador , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ventrículos Cardíacos/citología , Toxinas Marinas/farmacología , Modelos Biológicos , Oxazoles/farmacología , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos
11.
Stem Cell Reports ; 16(11): 2589-2606, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34653403

RESUMEN

Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Corazón/fisiología , Miocardio/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Humanos , Modelos Cardiovasculares , Miocardio/citología , Células Madre Pluripotentes/citología , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/genética , Nodo Sinoatrial/citología , Nodo Sinoatrial/embriología , Nodo Sinoatrial/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
12.
Cell Death Dis ; 12(7): 667, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215719

RESUMEN

Long non-coding RNA (lncRNA) is receiving increasing attention in embryonic stem cells (ESCs) research. However, the roles of lncRNA in the differentiation of ESCs into pacemaker-like cells are still unclear. Therefore, the present study aims to explore the roles and mechanisms of lncRNA in the differentiation of ESCs into pacemaker-like cells. ESCs were cultured and induced differentiation to pacemaker-like cells. RNA sequencing was used to identify the differential expression lncRNAs during the differentiation of ESCs into pacemaker-like cells. Cell morphology observation, flow cytometry, quantitative real-time polymerase chain reaction, western blot, and immunofluorescence were used to detect the differentiation of ESCs into pacemaker-like cells. LncRNA and genes overexpression or knockdown through transfected adenovirus in the differentiation process. The fluorescence in situ hybridization (FISH) detected the lncRNA location in the differentiated ESCs. Luciferase reporter gene assay, methylation-specific PCR, chromatin immunoprecipitation assay, and RNA immunoprecipitation assay were performed to reveal the mechanism of lncRNA-regulating HCN4 expression. Rescue experiments were used to confirm that lncRNA regulates the differentiation of ESCs into pacemaker-like cells through HCN4. We cultured the ESCs and induced the differentiation of ESCs into pacemaker-like cells successfully. The expression of lncRNA RCPCD was significantly decreased in the differentiation of ESCs into pacemaker-like cells. Overexpression of RCPCD inhibited the differentiation of ESCs into pacemaker-like cells. RCPCD inhibited the expression of HCN4 by increasing HCN4 methylation at the promoter region through DNMT1, DNMT2, and DNMT3. RCPCD inhibited the differentiation of ESCs into pacemaker-like cells by inhibiting the expression of HCN4. Our results confirm the roles and mechanism of lncRNA RCPCD in the differentiation of ESCs into pacemaker-like cells, which could pave the path for the development of a cell-based biological pacemaker.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Metilación de ADN , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Nodo Sinoatrial/metabolismo , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , ARN Largo no Codificante/metabolismo , Nodo Sinoatrial/citología
13.
Sci Rep ; 11(1): 12465, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127743

RESUMEN

Heart rate (HR) and sinoatrial node (SAN) function are modulated by the autonomic nervous system. HR regulation by the parasympathetic nervous system (PNS) is impaired in diabetes mellitus (DM), which is denoted cardiovascular autonomic neuropathy. Whether blunted PNS effects on HR in type 2 DM are related to impaired responsiveness of the SAN to PNS agonists is unknown. This was investigated in type 2 diabetic db/db mice in vivo and in isolated SAN myocytes. The PNS agonist carbachol (CCh) had a smaller inhibitory effect on HR, while HR recovery time after CCh removal was accelerated in db/db mice. In isolated SAN myocytes CCh reduced spontaneous action potential firing frequency but this effect was reduced in db/db mice due to blunted effects on diastolic depolarization slope and maximum diastolic potential. Impaired effects of CCh occurred due to enhanced desensitization of the acetylcholine-activated K+ current (IKACh) and faster IKACh deactivation. IKACh alterations were reversed by inhibition of regulator of G-protein signaling 4 (RGS4) and by the phospholipid PIP3. SAN expression of RGS4 was increased in db/db mice. Impaired PNS regulation of HR in db/db mice occurs due to reduced responsiveness of SAN myocytes to PNS agonists in association with enhanced RGS4 activity.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/fisiopatología , Frecuencia Cardíaca/fisiología , Proteínas RGS/metabolismo , Nodo Sinoatrial/metabolismo , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Sistema Nervioso Parasimpático , Proteínas RGS/antagonistas & inhibidores , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/inervación
14.
J Mol Cell Cardiol ; 157: 104-112, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964276

RESUMEN

miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC). We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1. miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1. In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Potenciales de Acción , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Fenómenos Electrofisiológicos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica , Inmunofenotipificación , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
15.
Biochim Biophys Acta Gene Regul Mech ; 1864(4-5): 194702, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706013

RESUMEN

The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.


Asunto(s)
Relojes Biológicos/fisiología , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Organogénesis/fisiología , Nodo Sinoatrial/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Nodo Sinoatrial/citología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Protein Cell ; 12(7): 545-556, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33548033

RESUMEN

Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.


Asunto(s)
Relojes Biológicos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Corteza Visual Primaria/metabolismo , Nodo Sinoatrial/metabolismo , Transcriptoma , Potenciales de Acción/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Calcio/metabolismo , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Corteza Visual Primaria/citología , Receptores Ionotrópicos de Glutamato/clasificación , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/clasificación , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Análisis de la Célula Individual , Nodo Sinoatrial/citología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
17.
Nat Commun ; 12(1): 287, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436583

RESUMEN

Bioelectrical impulses intrinsically generated within the sinoatrial node (SAN) trigger the contraction of the heart in mammals. Though discovered over a century ago, the molecular and cellular features of the SAN that underpin its critical function in the heart are uncharted territory. Here, we identify four distinct transcriptional clusters by single-cell RNA sequencing in the mouse SAN. Functional analysis of differentially expressed genes identifies a core cell cluster enriched in the electrogenic genes. The similar cellular features are also observed in the SAN from both rabbit and cynomolgus monkey. Notably, Vsnl1, a core cell cluster marker in mouse, is abundantly expressed in SAN, but is barely detectable in atrium or ventricle, suggesting that Vsnl1 is a potential SAN marker. Importantly, deficiency of Vsnl1 not only reduces the beating rate of human induced pluripotent stem cell - derived cardiomyocytes (hiPSC-CMs) but also the heart rate of mice. Furthermore, weighted gene co-expression network analysis (WGCNA) unveiled the core gene regulation network governing the function of the SAN in mice. Overall, these findings reveal the whole transcriptome profiling of the SAN at single-cell resolution, representing an advance toward understanding of both the biology and the pathology of SAN.


Asunto(s)
Mamíferos/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Nodo Sinoatrial/citología , Animales , Relojes Biológicos , Agregación Celular , Análisis por Conglomerados , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Frecuencia Cardíaca , Células Madre Pluripotentes Inducidas/citología , Macaca fascicularis , Ratones , Miocitos Cardíacos/metabolismo , Neurocalcina/deficiencia , Neurocalcina/metabolismo , Conejos , Especificidad de la Especie , Procesos Estocásticos
18.
Biochem J ; 477(20): 3985-3999, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33034621

RESUMEN

Ryanodine receptors are responsible for the massive release of calcium from the sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the effect of MCa and its analog MCaE12A on isolated cardiac ryanodine receptor (RyR2), and showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ transients, calcium sparks and contraction on cardiomyocytes isolated from adult rats or differentiated from human-induced pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes and promotes the abnormal opening of RyR2. We also investigated the effect of MCaE12A on the pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A improves pacemaker activity of sinus node cells obtained from mice lacking L-type Cav1.3 channel, or following selective pharmacologic inhibition of calcium influx via Cav1.3. Our results identify MCaE12A as a high-affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca2+ homeostasis and dynamic of cardiac cells.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Venenos de Escorpión/farmacología , Nodo Sinoatrial/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes , Ratas , Ratas Wistar , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpión/química , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Porcinos
19.
Proc Natl Acad Sci U S A ; 117(25): 14522-14531, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513692

RESUMEN

How G protein-coupled receptors (GPCRs) evoke specific biological outcomes while utilizing a limited array of G proteins and effectors is poorly understood, particularly in native cell systems. Here, we examined signaling evoked by muscarinic (M2R) and adenosine (A1R) receptor activation in the mouse sinoatrial node (SAN), the cardiac pacemaker. M2R and A1R activate a shared pool of cardiac G protein-gated inwardly rectifying K+ (GIRK) channels in SAN cells from adult mice, but A1R-GIRK responses are smaller and slower than M2R-GIRK responses. Recordings from mice lacking Regulator of G protein Signaling 6 (RGS6) revealed that RGS6 exerts a GPCR-dependent influence on GIRK-dependent signaling in SAN cells, suppressing M2R-GIRK coupling efficiency and kinetics and A1R-GIRK signaling amplitude. Fast kinetic bioluminescence resonance energy transfer assays in transfected HEK cells showed that RGS6 prefers Gαo over Gαi as a substrate for its catalytic activity and that M2R signals preferentially via Gαo, while A1R does not discriminate between inhibitory G protein isoforms. The impact of atrial/SAN-selective ablation of Gαo or Gαi2 was consistent with these findings. Gαi2 ablation had minimal impact on M2R-GIRK and A1R-GIRK signaling in SAN cells. In contrast, Gαo ablation decreased the amplitude and slowed the kinetics of M2R-GIRK responses, while enhancing the sensitivity and prolonging the deactivation rate of A1R-GIRK signaling. Collectively, our data show that differences in GPCR-G protein coupling preferences, and the Gαo substrate preference of RGS6, shape A1R- and M2R-GIRK signaling dynamics in mouse SAN cells.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nodo Sinoatrial/metabolismo , Potenciales de Acción/fisiología , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Células HEK293 , Frecuencia Cardíaca/fisiología , Humanos , Preparación de Corazón Aislado , Ratones , Ratones Noqueados , Cultivo Primario de Células , Proteínas RGS/genética , Receptor de Adenosina A1/metabolismo , Receptor Muscarínico M2/metabolismo , Transducción de Señal/fisiología , Nodo Sinoatrial/citología
20.
Pharmacotherapy ; 40(6): 544-564, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248556

RESUMEN

Ivabradine lowers heart rate by inhibiting the hyperpolarization-activated current in pacemaker cells, and its use for the treatment of heart failure (HF) and ischemic heart disease (IHD) is well described. Ivabradine may be an attractive treatment option for other conditions for which a reduction in heart rate is desirable but less is known about its role in these settings. The primary objective was to perform a scoping review summarizing the literature evaluating novel uses for ivabradine other than HF and IHD in adults. PubMed and EMBASE were searched for articles for all dates through September 2019. Search strategies combined terms generic, commercial/trade, and international names for ivabradine. Manual search of references was also performed to identify additional articles. Studies were included if they were published in English, evaluated the efficacy of ivabradine for indications other than HF or IHD in patients aged 18 years or older, and the primary outcome included clinically relevant end points. Articles were screened first by title and abstract followed by full-text screening of the remaining articles. After removal of duplicates, 1807 records were screened for inclusion and 84 studies were included in this scoping review. Novel uses of ivabradine were reported for various tachyarrhythmias, valvular heart disease, premedication for coronary computed tomography angiography, perioperative risk reduction, sepsis with and without multi-organ dysfunction syndrome, cor pulmonale, reactive airway disease, and erectile dysfunction. This scoping review identified several potential novel uses for ivabradine in adults. This review may help to identify existing gaps where further research is needed to elucidate the role of ivabradine for indications beyond HF and IHD.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Frecuencia Cardíaca/efectos de los fármacos , Ivabradina/uso terapéutico , Adulto , Fármacos Cardiovasculares/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Ivabradina/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...