Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Sci Adv ; 10(21): eadl3214, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787958

RESUMEN

The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.


Asunto(s)
Emparejamiento Base , Dominio Catalítico , ADN Polimerasa gamma , Humanos , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/química , Modelos Moleculares , Mutación , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxicitosina/química , Cristalografía por Rayos X , Unión Proteica
2.
Biochemistry ; 63(11): 1412-1422, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780930

RESUMEN

The catalytic function of DNA polymerase ß (pol ß) fulfills the gap-filling requirement of the base excision DNA repair pathway by incorporating a single nucleotide into a gapped DNA substrate resulting from the removal of damaged DNA bases. Most importantly, pol ß can select the correct nucleotide from a pool of similarly structured nucleotides to incorporate into DNA in order to prevent the accumulation of mutations in the genome. Pol ß is likely to employ various mechanisms for substrate selection. Here, we use dCTP analogues that have been modified at the ß,γ-bridging group of the triphosphate moiety to monitor the effect of leaving group basicity of the incoming nucleotide on precatalytic conformational changes, which are important for catalysis and selectivity. It has been previously shown that there is a linear free energy relationship between leaving group pKa and the chemical transition state. Our results indicate that there is a similar relationship with the rate of a precatalytic conformational change, specifically, the closing of the fingers subdomain of pol ß. In addition, by utilizing analogue ß,γ-CHX stereoisomers, we identified that the orientation of the ß,γ-bridging group relative to R183 is important for the rate of fingers closing, which directly influences chemistry.


Asunto(s)
ADN Polimerasa beta , Conformación Proteica , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética , Humanos , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxicitosina/química , Especificidad por Sustrato , Modelos Moleculares , Cinética , ADN/metabolismo , ADN/química , Reparación del ADN
3.
J Virol ; 95(16): e0240120, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34076480

RESUMEN

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.


Asunto(s)
Farmacorresistencia Viral/genética , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , ADN Polimerasa Dirigida por ARN/química , Inhibidores de la Transcriptasa Inversa/farmacología , Sitios de Unión , Cristalografía por Rayos X , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Guanina/metabolismo , Guanina/farmacología , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Virus de la Hepatitis B/química , Virus de la Hepatitis B/enzimología , Concentración 50 Inhibidora , Cinética , Lamivudine/metabolismo , Lamivudine/farmacología , Mutación , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Molecules ; 26(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924626

RESUMEN

Modified 2'-deoxyribonucleotide triphosphates (dNTPs) have widespread applications in both existing and emerging biomolecular technologies. For such applications it is an essential requirement that the modified dNTPs be substrates for DNA polymerases. To date very few examples of C5-modified dNTPs bearing negatively charged functionality have been described, despite the fact that such nucleotides might potentially be valuable in diagnostic applications using Si-nanowire-based detection systems. Herein we have synthesised C5-modified dUTP and dCTP nucleotides each of which are labelled with an dianionic reporter group. The reporter group is tethered to the nucleobase via a polyethylene glycol (PEG)-based linkers of varying length. The substrate properties of these modified dNTPs with a variety of DNA polymerases have been investigated to study the effects of varying the length and mode of attachment of the PEG linker to the nucleobase. In general, nucleotides containing the PEG linker tethered to the nucleobase via an amide rather than an ether linkage proved to be the best substrates, whilst nucleotides containing PEG linkers from PEG6 to PEG24 could all be incorporated by one or more DNA polymerase. The polymerases most able to incorporate these modified nucleotides included Klentaq, Vent(exo-) and therminator, with incorporation by Klenow(exo-) generally being very poor.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/química , Polietilenglicoles/química
5.
J Pharm Biomed Anal ; 184: 113213, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32126457

RESUMEN

Passive gastrointestinal absorption and membrane retention of twelve esters of (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (EDCP) and (S,S)-1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (PDCP), as well as of these two non-esterified acids were estimated using PAMPA test. Artificial PAMPA membrane used in this study for the simulation of gastrointestinal barrier was solution of egg lecithin in dodecane (1 % w/v). All tested compounds belong to class III (high membrane retention and low permeation), whereas EDCP, dipentyl ester of PDCP (DPE-PDCP) and diisopentyl ester of PDCP (DIPE-PDCP) belong to class I (negligible membrane retention and low permeation). Finally, quantitative structure - permeability and structure - retention relationships models were created in order to find quantitative relationships between physico-chemical properties of tested compounds and PAMPA membrane permeability/membrane retention parameters. Statistically the most reliable models were analysed and used for the design of new compounds for which favourable membrane permeability and retention can be expected.


Asunto(s)
Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Absorción Gastrointestinal/fisiología , Absorción Intestinal/fisiología , Membranas/metabolismo , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Ésteres/química , Ésteres/metabolismo , Humanos , Lecitinas/química , Lecitinas/metabolismo , Membranas Artificiales , Permeabilidad
6.
J Mol Biol ; 432(4): 1126-1142, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31954130

RESUMEN

Precise regulation of dNTPs within the cellular nucleotide pool is essential for high accuracy of DNA replication and is critical for retaining the genomic integrity. Recently, human dCTPase (deoxycytidine triphosphatase), also known as DCTPP1 (human all-alpha dCTP pyrophosphatase 1), has been revealed to be a key player in the balance of pyrimidine nucleotide concentrations within cells, with DCTPP1 deficiency causing DNA damage and genetic instability in both chromosomal and mitochondrial DNA. DCTPP1 also exhibits an additional "house cleaning" function as it has been shown to be highly active against modified cytidine triphosphates, such as 5-methyl-dCTP, which, if incorrectly incorporated into DNA can introduce undesirable epigenetic marking. To date, structural studies of mammalian dCTPase have been limited to inactive constructs, which do not provide information regarding the catalytic mechanism of this important enzyme. We present here the first structures of an active mammalian dCTPase from M. musculus in complex with the nonhydrolyzable substrate analog dCMPNPP and the products 5-Me-dCMP and dCMP. These structures provide clear insights into substrate binding and catalysis and clearly elucidate why previous structures of mammalian dCTPase were catalytically inactive. The overall structure of M. musculus dCTPase is highly similar to enzymes from the all-alpha NTP phosphohydrolase superfamily. Comparison of M. musculus dCTPase with homologs from a diverse range of mammals, including humans, shows that the residues, which contribute to substrate recognition, are entirely conserved, further supporting the importance of this enzyme in the protection of genomic integrity in mammalian cells.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Daño del ADN/genética , Nucleótidos de Desoxicitosina/metabolismo , Epigenómica , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Estructura Secundaria de Proteína , Pirofosfatasas/genética
7.
Cell Mol Life Sci ; 77(8): 1645-1660, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31377845

RESUMEN

To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.


Asunto(s)
Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos de Timina/metabolismo , Línea Celular , Proliferación Celular , Daño del ADN , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxiuracil/genética , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Humanos , Células MCF-7 , Mutación , Pirofosfatasas/genética , Nucleótidos de Timina/genética
8.
Molecules ; 24(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683505

RESUMEN

A wide range of endogenous and exogenous alkylating agents attack DNA to generate various alkylation adducts. N7-methyl-2-deoxyguanosine (Fm7dG) is the most abundant alkylative DNA lesion. If not repaired, Fm7dG can undergo spontaneous depurination, imidazole ring-opening, or bypass by translesion synthesis DNA polymerases. Human DNA polymerase η (polη) efficiently catalyzes across Fm7dG in vitro, but its structural basis is unknown. Herein, we report a crystal structure of polη in complex with templating Fm7dG and an incoming nonhydrolyzable dCTP analog, where a 2'-fluorine-mediated transition destabilization approach was used to prevent the spontaneous depurination of Fm7dG. The structure showed that polη readily accommodated the Fm7dG:dCTP base pair with little conformational change of protein and DNA. In the catalytic site, Fm7dG and dCTP formed three hydrogen bonds with a Watson-Crick geometry, indicating that the major keto tautomer of Fm7dG is involved in base pairing. The polη-Fm7dG:dCTP structure was essentially identical to the corresponding undamaged structure, which explained the efficient bypass of the major methylated lesion. Overall, the first structure of translesion synthesis DNA polymerase bypassing Fm7dG suggests that in the catalytic site of Y-family DNA polymerases, small N7-alkylguanine adducts may be well tolerated and form the canonical Watson-Crick base pair with dCTP through their keto tautomers.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Alquilación , Emparejamiento Base , Dominio Catalítico , ADN/química , Nucleótidos de Desoxicitosina/metabolismo , Desoxiguanosina/química , Humanos , Cinética , Metales/química , Modelos Moleculares , Conformación de Ácido Nucleico
9.
Cold Spring Harb Protoc ; 2019(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371471

RESUMEN

Similar to direct RNA labeling, direct DNA labeling with Cy-dCTP is the simplest and fastest method for labeling DNA. This is a standard Klenow labeling protocol in which Cy-dCTP is incorporated during the labeling reaction. After stopping the reaction, labeled nucleotide is separated from unreacted Cy-dCTP, and Cy3- and Cy5-labeled materials are combined for hybridization. This protocol is suitable for many applications, including detection of copy-number variation, nucleosome mapping, and other location analysis (e.g., chromatin immunoprecipitation [ChIP]-chip).


Asunto(s)
Carbocianinas/metabolismo , ADN/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Coloración y Etiquetado , Humanos
10.
J Struct Biol ; 204(3): 449-456, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312643

RESUMEN

Mis-incorporation of modified nucleotides, such as 5-methyl-dCTP or 8-oxo-dGTP, in DNA can be detrimental to genomic integrity. MutT proteins are sanitization enzymes which function by hydrolyzing such nucleotides and regulating the pool of free nucleotides in the cytoplasm. Mycobacterial genomes have a set of four MutT homologs, namely, MutT1, MutT2, MutT3 and MutT4. Mycobacterial MutT2 hydrolyzes 5 m-dCTP and 8-oxo-dGTP to their respective monophosphate products. Additionally, it can hydrolyze canonical nucleotides dCTP and CTP, with a suggested role in sustaining their optimal levels in the nucleotide pool. The structures of M. smegmatis MutT2 and its complexes with cytosine derivatives have been determined at resolutions ranging from 1.10 Što 1.73 Å. The apo enzyme and its complexes with products (dCMP, CMP and 5 m-dCMP) crystallize in space group P21212, while those involving substrates (dCTP, CTP and 5 m-dCTP) crystallize in space group P21. The molecule takes an α/ß/α sandwich fold arrangement, as observed in other MutT homologs. The nucleoside moiety of the ligands is similarly located in all the complexes, while the location of the remaining tail exhibits variability. This is the first report of a MutT2-type protein in complex with ligands. A critical interaction involving Asp116 confers the specificity of the enzyme towards cytosine moieties. A conserved set of enzyme-ligand interactions along with concerted movements of important water molecules provide insights into the mechanism of action.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Mycobacterium/enzimología , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/química , Hidrólisis , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
11.
Nucleic Acids Res ; 46(12): 5911-5923, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29846697

RESUMEN

A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2'-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo-), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.


Asunto(s)
ADN/biosíntesis , ADN/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxicitosina/síntesis química
12.
ACS Synth Biol ; 7(6): 1565-1572, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746092

RESUMEN

We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.


Asunto(s)
Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos de Timina/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Decitabina/química , Decitabina/metabolismo , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/genética , Nucleótidos de Desoxiguanina/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Microalgas/genética , Microorganismos Modificados Genéticamente , Tasa de Mutación , Péptido Hidrolasas/genética , Timidina Quinasa/genética , Timidilato Sintasa/genética , Nucleótidos de Timina/genética
13.
Proc Natl Acad Sci U S A ; 115(9): 2210-2215, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29382762

RESUMEN

Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP-specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.


Asunto(s)
Antibacterianos/farmacología , Nucleótidos de Desoxicitosina/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Macrófagos , Oxidación-Reducción , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Especies Reactivas de Oxígeno
14.
Chem Res Toxicol ; 30(11): 1993-2001, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28862449

RESUMEN

Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase ß (pol ß) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol ß. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiuracil/química , Guanosina Trifosfato/análogos & derivados , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico
15.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1326-1335, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28807888

RESUMEN

The parasite Schistosoma mansoni possess all pathways for pyrimidine biosynthesis, whereby deaminases play an essential role in the thymidylate cycle, a crucial step to controlling the ratio between cytidine and uridine nucleotides. In this study, we heterologously expressed and purified the deoxycytidylate (dCMP) deaminase from S. mansoni to obtain structural, biochemical and kinetic information. Small-angle X-ray scattering of this enzyme showed that it is organized as a hexamer in solution. Isothermal titration calorimetry was used to determine the kinetic constants for dCMP-dUMP conversion and the role of dCTP and dTTP in enzymatic regulation. We evaluated the metals involved in activating the enzyme and show for the first time the dependence of correct folding on the interaction of two metals. This study provides information that may be useful for understanding the regulatory mechanisms involved in the metabolic pathways of S. mansoni. Thus, improving our understanding of the function of these essential pathways for parasite metabolism and showing for the first time the hitherto unknown deaminase function in this parasite.


Asunto(s)
DCMP Desaminasa/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiuracil/química , Magnesio/química , Proteínas Protozoarias/química , Schistosoma mansoni/enzimología , Zinc/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , DCMP Desaminasa/genética , DCMP Desaminasa/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Expresión Génica , Cinética , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/metabolismo
16.
Sci Rep ; 7(1): 4756, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684739

RESUMEN

DNA polymerase (pol) processivity, i.e., the bases a polymerase extends before falling off the DNA, and activity are important for copying difficult DNA sequences, including simple repeats. Y-family pols would be appealing for copying difficult DNA and incorporating non-natural dNTPs, due to their low fidelity and loose active site, but are limited by poor processivity and activity. In this study, the binding between Dbh and DNA was investigated to better understand how to rationally design enhanced processivity in a Y-family pol. Guided by structural simulation, a fused pol Sdbh with non-specific dsDNA binding protein Sso7d in the N-terminus was designed. This modification increased in vitro processivity 4-fold as compared to the wild-type Dbh. Additionally, bioinformatics was used to identify amino acid mutations that would increase stabilization of Dbh bound to DNA. The variant SdbhM76I further improved the processivity of Dbh by 10 fold. The variant SdbhKSKIP241-245RVRKS showed higher activity than Dbh on the incorporation of dCTP (correct) and dATP (incorrect) opposite the G (normal) or 8-oxoG(damaged) template base. These results demonstrate the capability to rationally design increases in pol processivity and catalytic efficiency through computational DNA binding predictions and the addition of non-specific DNA binding domains.


Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/química , Sulfolobus solfataricus/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , ADN de Archaea/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética
17.
Nucleic Acids Res ; 45(10): 6228-6237, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28402499

RESUMEN

Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase ß (hPolß), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolß. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolß, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolß follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolß discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolß to complete thumb domain closure.


Asunto(s)
ADN Polimerasa beta/metabolismo , Inhibidores de la Transcriptasa Inversa/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Nucleótidos de Desoxicitosina/metabolismo , Emtricitabina/química , Emtricitabina/metabolismo , Humanos , Cinética , Lamivudine/química , Lamivudine/metabolismo , Modelos Moleculares , Conformación Molecular , Mutación Missense , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Sci Rep ; 7: 43904, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272441

RESUMEN

N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a "foothold" and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Desoxiadenosinas/metabolismo , Emparejamiento Base , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN Polimerasa Dirigida por ADN/química , Desoxiadenosinas/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Humanos , Cinética , Estructura Cuaternaria de Proteína , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo , ADN Polimerasa iota
19.
Biochemistry ; 56(13): 1841-1853, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28290677

RESUMEN

DNA can be damaged by many compounds in our environment, and the resulting damaged DNA is commonly replicated by translesion synthesis (TLS) polymerases. Because the mechanism and efficiency of TLS are affected by the type of DNA damage, obtaining information for a variety of DNA adducts is critical. However, there is no structural information for the insertion of a dNTP opposite an O6-dG adduct, which is a particularly harmful class of DNA lesions. We used molecular dynamics (MD) simulations to investigate structural and energetic parameters that dictate preferred dNTP insertion opposite O6-benzyl-guanine (Bz-dG) by DNA polymerase IV, a prototypical TLS polymerase. Specifically, MD simulations were completed on all possible ternary insertion complexes and ternary -1 base deletion complexes with different Bz-dG conformations. Our data suggests that the purines are unlikely to be inserted opposite anti- or syn-Bz-dG, and dTTP is unlikely to be inserted opposite syn-Bz-dG, because of changes in the active site conformation, including critical hydrogen-bonding interactions and/or reaction-ready parameters compared to natural dG replication. In contrast, a preserved active site conformation suggests that dCTP can be inserted opposite either anti- or syn-Bz-dG and dTTP can be inserted opposite anti-Bz-dG. This is the first structural explanation for the experimentally observed preferential insertion of dCTP and misincorporation of dTTP opposite Bz-dG. Furthermore, we provide atomic level insight into why Bz-dG replication does not lead to deletion mutations, which is in contrast with the replication outcomes of other adducts. These findings provide a basis for understanding the replication of related O6-dG adducts.


Asunto(s)
Compuestos de Bencilo/síntesis química , Aductos de ADN/química , ADN Polimerasa beta/química , Reparación del ADN , Replicación del ADN , Nucleótidos de Desoxiguanina/química , Proteínas de Escherichia coli/química , Guanina/síntesis química , Dominio Catalítico , Daño del ADN , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
20.
Cell Death Differ ; 24(5): 774-784, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28186504

RESUMEN

Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Timidina Quinasa/genética , Timidina/farmacología , Nucleótidos de Timina/deficiencia , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Cultivo Primario de Células , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Timidina Quinasa/metabolismo , Timidina Monofosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...