Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.506
Filtrar
1.
J Mol Biol ; 436(10): 168557, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582148

RESUMEN

Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.


Asunto(s)
Integrasa de VIH , VIH-1 , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/genética , VIH-1/enzimología , Humanos , ADN Viral/metabolismo , ADN Viral/genética , Modelos Moleculares , Multimerización de Proteína , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética
2.
Viruses ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675926

RESUMEN

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Asunto(s)
Virus de la Enfermedad de Newcastle , Proteínas Virales , Replicación Viral , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica , ARN Viral/genética , ARN Viral/metabolismo , Pollos , Virulencia , Unión Proteica , Mutación
3.
Proc Natl Acad Sci U S A ; 121(12): e2316491121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466836

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Microscopía por Crioelectrón , Nucleoproteínas/metabolismo , ADN de Cadena Simple , Replicación del ADN
4.
Viruses ; 16(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543786

RESUMEN

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Genómica
5.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453949

RESUMEN

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , COVID-19/patología , Inflamasomas/metabolismo , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismo
6.
Nucleic Acids Res ; 52(4): 2045-2065, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281216

RESUMEN

The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.


Asunto(s)
Fagos de Bacillus , Bacillus subtilis , Fagos de Bacillus/genética , Fagos de Bacillus/química , Bacillus subtilis/virología , Replicación del ADN , ADN Viral/genética , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo
7.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294249

RESUMEN

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Asunto(s)
Caspasas , Citoplasma , Fiebre Hemorrágica Americana , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus Junin , Nucleoproteínas , Biosíntesis de Proteínas , Humanos , Apoptosis , Inhibidores de Caspasas/metabolismo , Caspasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Activación Enzimática , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Interferones/genética , Interferones/inmunología , Virus Junin/genética , Virus Junin/metabolismo , Virus Junin/patogenicidad , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Replicación Viral
8.
J Mol Biol ; 436(2): 168369, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977299

RESUMEN

DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.


Asunto(s)
ADN Helicasas , Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli , ADN Helicasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo
9.
Biotechnol Appl Biochem ; 71(2): 280-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054375

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is classified among top 10 priority pathogens by World Health Organization. CCHFV belongs to Bunyaviridae family and negative sense ssRNA genome composed of three RNA segments: L, M, and S. RNA viruses show higher mutation rate as compared to DNA viruses. To gain deeper understanding of impact of point mutations in CCHFV M and S segment, mutation profiling, homology modeling, and molecular dynamic (MD) simulation were performed. Structural glycoproteins (glycoprotein C [Gc] and glycoprotein N [Gn]) of CCHFV are important for host-virus interaction and genome packaging, whereas CCHFV nucleoprotein (NP) is crucial for viral replication. Hence, current study is focused on evaluation of eight mutations in structural glycoproteins (Gc: 7 and Gn: 1) of M segment and seven mutations in NP of S segment. All these mutations were highly frequent, with mutation frequency between 0.81 and 1.0 and found to be persistent in the recent strains of CCHFV. Solubility analysis predicted that selected point mutations reduce solubility of Gc protein and increase solubility of Gn and NP proteins. MD simulation study deciphered that A1046V and G1158E in Gc protein, I778T in Gn protein, and H195R in NP protein displayed large deviation and fluctuation, and affected intramolecular interactions. In conclusion, we observed that point mutations could impact structure, stability, and host-virus interaction of protein, and might lead to evolution of new strains for better survival and drug resistance.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Proteínas del Envoltorio Viral , Virus de la Fiebre Hemorrágica de Crimea-Congo/química , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Mutación Puntual , Glicoproteínas/genética , Glicoproteínas/química , ARN
10.
Nat Commun ; 14(1): 7627, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993464

RESUMEN

Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.


Asunto(s)
Metapneumovirus , Niño , Humanos , Preescolar , Metapneumovirus/genética , Nucleocápside/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo
11.
Nat Commun ; 14(1): 7003, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919288

RESUMEN

The BRCA2 tumour suppressor protein preserves genomic integrity via interactions with the DNA-strand exchange RAD51 protein in homology-directed repair. The RAD51-binding TR2 motif at the BRCA2 C-terminus is essential for protection and restart of stalled replication forks. Biochemical evidence shows that TR2 recognises filamentous RAD51, but existing models of TR2 binding to RAD51 lack a structural basis. Here we used cryo-electron microscopy and structure-guided mutagenesis to elucidate the mechanism of TR2 binding to nucleoprotein filaments of human RAD51. We find that TR2 binds across the protomer interface in the filament, acting as a brace for adjacent RAD51 molecules. TR2 targets an acidic-patch motif on human RAD51 that serves as a recruitment hub in fission yeast Rad51 for recombination mediators Rad52 and Rad55-Rad57. Our findings provide a structural rationale for RAD51 filament stabilisation by BRCA2 and reveal a common recruitment mechanism of recombination mediators to the RAD51 filament.


Asunto(s)
Proteínas de Unión al ADN , Nucleoproteínas , Humanos , Proteínas de Unión al ADN/metabolismo , Nucleoproteínas/metabolismo , Microscopía por Crioelectrón , Recombinasa Rad51/metabolismo , Proteína BRCA2/metabolismo , Reparación del ADN
12.
Emerg Microbes Infect ; 12(2): 2275606, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874309

RESUMEN

Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Porcinos , Humanos , Proteínas Virales/genética , Nucleoproteínas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Proteínas Serina-Treonina Quinasas/genética , Serina , Replicación Viral/genética , Proteínas Supresoras de Tumor
13.
Emerg Microbes Infect ; 12(2): 2270073, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823597

RESUMEN

Influenza A viruses (IAVs) continue to cause tremendous economic losses to the global animal industry and respiratory diseases and deaths among humans. The nuclear import of the vRNP complex, composed of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP), and viral RNA, is essential for the efficient replication of IAV. Host factors involved in this process can be targeted for the development of countermeasures against IAV infection. Here, we found that Ankyrin Repeat and BTB Domain Containing 1 (ABTB1) promotes the replication of IAV, and positively regulates the nuclear import of the vRNP complex. ABTB1 did not interact directly with NP, indicating that ABTB1 plays an indirect role in facilitating the nuclear import of the vRNP complex. Immunoprecipitation and mass spectrometry revealed that Tripartite Motif Containing 4 (TRIM4) interacts with ABTB1. We found that TRIM4 relies on its E3 ubiquitin ligase activity to inhibit the replication of IAV by targeting and degrading NP within the incoming vRNP complex as well as the newly synthesized NP. ABTB1 interacted with TRIM4, leading to TRIM4 degradation through the proteasome system. Notably, ABTB1-mediated degradation of TRIM4 blocked the effect of TRIM4 on NP stability, and largely counteracted the inhibitory effect of TRIM4 on IAV replication. Our findings define a novel role for ABTB1 in aiding the nuclear import of the vRNP complex of IAV by counteracting the destabilizing effect of TRIM4 on the viral NP protein.


Asunto(s)
Virus de la Influenza A , Nucleoproteínas , Animales , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus de la Influenza A/fisiología , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Unión Proteica , Replicación Viral/fisiología , Proteínas Represoras/metabolismo
14.
Viruses ; 15(9)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766369

RESUMEN

The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV.


Asunto(s)
Infecciones por Bunyaviridae , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Células HeLa , Transducción de Señal , Simulación del Acoplamiento Molecular , Phlebovirus/genética , Replicación Viral , Serina/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
15.
J Mol Biol ; 435(20): 168241, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598728

RESUMEN

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Cuerpos de Inclusión , Nucleoproteínas , Replicación Viral , Humanos , Ebolavirus/metabolismo , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Cuerpos de Inclusión/virología , Nucleoproteínas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
16.
Curr Protoc ; 3(6): e805, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37338240

RESUMEN

Symmetrical deposition of parental and newly synthesized chromatin proteins over both sister chromatids is important for the maintenance of epigenetic integrity. However, the mechanisms to maintain equal distribution of parental and newly synthesized chromatid proteins over sister chromatids remains largely unknown. Here, we describe the protocol for the recently developed double-click seq method that enables mapping of asymmetry in the deposition of parental and newly synthesized chromatin proteins on both sister chromatids in DNA replication. The method involved metabolic labeling of new chromatin proteins with l-Azidohomoalanine (AHA) and newly synthesized DNA with Ethynyl-2'-deoxyuridine (EdU) followed by two subsequent click reactions for biotinylation and subsequently by corresponding separation steps. This enables isolation of parental DNA that was bound to nucleosomes containing new chromatin proteins. Sequencing of these DNA samples and mapping around origins of replication in the cellular DNA enables estimation of the asymmetry in deposition of chromatin proteins over the leading and lagging strand in DNA replication. Altogether, this method contributes to the toolbox to understand histone deposition in DNA replication. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Metabolic labeling with AHA and EdU and isolation of nuclei Basic Protocol 2: First click reaction, MNase digestion and streptavidin enrichment of labeled nucleosomes Basic Protocol 3: Second click reaction, Replication-Enriched Nucleosome Sequencing (RENS) Protocol.


Asunto(s)
ADN , Nucleosomas , Nucleosomas/genética , ADN/genética , ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Replicación del ADN
17.
Viruses ; 15(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37376628

RESUMEN

A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.


Asunto(s)
Virus Sincitial Respiratorio Humano , Humanos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo
18.
Nature ; 619(7970): 640-649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344589

RESUMEN

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Asunto(s)
Proteínas de Unión al ADN , Recombinación Homóloga , Complejos Multiproteicos , Humanos , Microscopía por Crioelectrón , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Especificidad por Sustrato
19.
J Mol Biol ; 435(16): 168153, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210029

RESUMEN

Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".


Asunto(s)
Nucleoproteínas , Virus Sincitial Respiratorio Humano , Compartimentos de Replicación Viral , Proteínas Estructurales Virales , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleoproteínas/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Compartimentos de Replicación Viral/metabolismo , Replicación Viral , Proteínas Estructurales Virales/metabolismo , Humanos
20.
Virulence ; 14(1): 2196847, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37005771

RESUMEN

Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays an important role in regulating the replication of many viruses. However, it remains elusive whether and how hnRNPA1 regulates fish virus replication. In this study, the effects of twelve hnRNPs on the replication of snakehead vesiculovirus (SHVV) were screened. Three hnRNPs, one of which was hnRNPA1, were identified as anti-SHVV factors. Further verification showed that knockdown of hnRNPA1 promoted, while overexpression of hnRNPA1 inhibited, SHVV replication. SHVV infection reduced the expression level of hnRNPA1 and induced the nucleocytoplasmic shuttling of hnRNPA1. Besides, we found that hnRNPA1 interacted with the viral phosphoprotein (P) via its glycine-rich domain, but not with the viral nucleoprotein (N) or large protein (L). The hnRNPA1-P interaction competitively disrupted the viral P-N interaction. Moreover, we found that overexpression of hnRNPA1 enhanced the polyubiquitination of the P protein and degraded it through proteasomal and lysosomal pathways. This study will help understanding the function of hnRNPA1 in the replication of single-stranded negative-sense RNA viruses and providing a novel antiviral target against fish rhabdoviruses.


Asunto(s)
Nucleoproteínas , Infecciones por Rhabdoviridae , Animales , Ribonucleoproteína Nuclear Heterogénea A1/genética , Nucleoproteínas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Peces , Vesiculovirus/genética , Vesiculovirus/metabolismo , Fosfoproteínas/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA