Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
J Tradit Chin Med ; 44(3): 458-467, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767629

RESUMEN

OBJECTIVE:To elucidate the mechanism by which Huoxue Jiedu Huayu recipe (, HJHR) regulates angiogenesis in the contralateral kidney of unilateral ureteral obstruction (UUO) rats and the mechanism by which it reduces of renal fibrosis. METHODS: Male Wistar rats were randomly divided into 4 groups: the sham group, UUO group (180 d of left ureter ligation), UUO plus eplerenone (EPL) group, and UUO plus HJHR group. After 180 d of oral drug administration, blood and contralateral kidneys were collected for analysis. Angiogenesis- and fibrosis-related indexes were detected. RESULTS: HJHR and EPL improved structural damage and renal interstitial fibrosis in the contralateral kidney and reduced the protein expression levels of α-smooth muscle actin (α-SMA), vimentin and collagen I. Moreover, these treatments could reduce the expression of vascular endothelial growth factor-A (VEGFA) by inhibiting the infiltration of macrophages. Furthermore, HJHR and EPL significantly reduced the expression of CD34 and CD105 by downregulating VEGFA production, which inhibited angiogenesis. Finally, the coexpressions of CD34, CD105 and α-SMA were decreased in the HJHR and EPL groups, indicating that endothelial-to-mesenchymal transition was inhibited. CONCLUSIONS: These findings confirm that HJHR alleviates contralateral renal fibrosis by inhibiting VEGFA-induced angiogenesis, encourage the use of HJHR against renal interstitial fibrosis and provide a theoretical basis for the clinical management of patients with CKD.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis , Riñón , Macrófagos , Ratas Wistar , Obstrucción Ureteral , Factor A de Crecimiento Endotelial Vascular , Animales , Masculino , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/genética , Angiogénesis
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791272

RESUMEN

Renal fibrosis (RF) stands as a pivotal pathological process in the advanced stages of chronic kidney disease (CKD), and impeding its progression is paramount for delaying the advancement of CKD. The miR-10 family, inclusive of miR-10a and miR-10b, has been implicated in the development of various fibrotic diseases. Nevertheless, the precise role of miR-10 in the development of RF remains enigmatic. In this study, we utilized both an in vivo model involving unilateral ureteral obstruction (UUO) in mice and an in vitro model employing TGF-ß1 stimulation in HK-2 cells to unravel the mechanism underlying the involvement of miR-10a/b in RF. The findings revealed heightened expression of miR-10a and miR-10b in the kidneys of UUO mice, accompanied by a substantial increase in p-Smad3 and renal fibrosis-related proteins. Conversely, the deletion of these two genes led to a notable reduction in p-Smad3 levels and the alleviation of RF in mouse kidneys. In the in vitro model of TGF-ß1-stimulated HK-2 cells, the co-overexpression of miR-10a and miR-10b fostered the phosphorylation of Smad3 and RF, while the inhibition of miR-10a and miR-10b resulted in a decrease in p-Smad3 levels and RF. Further research revealed that miR-10a and miR-10b, through binding to the 3'UTR region of Vasohibin-1 (VASH-1), suppressed the expression of VASH-1, thereby promoting the elevation of p-Smad3 and exacerbating the progression of RF. The miR-10 family may play a pivotal role in RF.


Asunto(s)
Fibrosis , MicroARNs , Transducción de Señal , Proteína smad3 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Proteína smad3/metabolismo , Proteína smad3/genética , Ratones , Humanos , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Masculino , Línea Celular , Riñón/metabolismo , Riñón/patología , Modelos Animales de Enfermedad , Enfermedades Renales/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/patología , Ratones Endogámicos C57BL , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología
3.
Discov Med ; 36(182): 604-612, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531801

RESUMEN

BACKGROUND: The hedgehog signaling pathway exerts vital functions in regulating epithelial-to-mesenchymal transition (EMT) in renal interstitial fibrosis (RIF). It was reported that lncRNA-maternally expressed gene 3 (lncRNA Meg3) can regulate hepatic fibrosis by regulating the expression of smoothened (Smo) in the hedgehog signaling pathway. However, the specific role of lncRNA Meg3 in renal fibrosis resulting from unilateral ureteral obstruction (UUO) by regulating the hedgehog signaling pathway has not been reported. Hence, this research aimed to expound the effects of lncRNA Meg3 on renal fibrosis induced by UUO in rats via the hedgehog pathway. METHODS: Peripheral blood was collected from patients with chronic kidney disease (CKD, CKD group) and healthy volunteers (Normal group) at the same period. In addition, 6-week-old male Sprague-Dawley (SD) rats were divided to Sham, UUO, UUO+shRNA Negative control (shNC), and UUO+sh-Meg3 groups, and their kidney tissues and serum were gathered. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was employed for detecting the lncRNA Meg3 expression level in the serum of patients and renal tissue of rats; kits for testing levels of blood urea nitrogen (BUN), creatinine (Cr), hydroxyproline (HYP), and 24-hour urine protein (24-up) in rats of each group; hematoxylin and eosin (HE) staining and Masson staining for observing kidney tissue and renal fibrosis level in rats; western blot for measuring levels of collagen type III (Col III), α-Smooth muscle actin (α-SMA), fibronectin, E-cadherin, sonic hedgehog (Shh), patched (Ptch) protein, smoothened (Smo) protein and glioma-associated oncogene homolog 1 (Gli1) protein expression. RESULTS: LncRNA Meg3 was highly expressed in CKD patients and UUO rats (p < 0.01). In contrast to the UUO+shNC group, knocking down lncRNA Meg3 improved renal injury, relieved pathological renal lesions, and reduced kidney fibrosis and related protein levels. It inhibited the hedgehog pathway in kidney tissues of UUO rats (p < 0.05 and p < 0.01). CONCLUSIONS: LncRNA Meg3 can aggravate UUO-induced rat renal fibrosis by activating the hedgehog pathway.


Asunto(s)
Enfermedades Renales , ARN Largo no Codificante , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Humanos , Masculino , Ratas , Fibrosis , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacología , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/complicaciones , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
4.
J Proteomics ; 298: 105144, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38431085

RESUMEN

Effective therapies of chronic kidney disease (CKD) are lacking due to the unclear molecular pathogenesis. Previous single omics-studies have described potential molecular regulation mechanism of CKD only at the level of transcription or translation. Therefore, this study generated an integrated transcriptomic and proteomic profile to provide deep insights into the continuous transcription-translation process during CKD. The comprehensive datasets identified 14,948 transcripts and 6423 proteins, 233 up-regulated and 364 down-regulated common differentially expressed genes of transcriptome and proteome were selected to further combined bioinformatics analysis. The obtained results revealed reactive oxygen species (ROS) metabolism and antioxidant system due to imbalance of mitochondria and peroxisomes were significantly repressed in CKD. Overall, this study presents a valuable multi-omics analysis that sheds light on the molecular mechanisms underlying CKD. SIGNIFICANCE: Chronic kidney disease (CKD) is a progressive and irreversible condition that results in abnormal kidney function and structure, and is ranked 18th among the leading causes of death globally, leading to a significant societal burden. Hence, there is an urgent need for research to detect new, sensitive, and specific biomarkers. Omics-based studies offer great potential to identify underlying disease mechanisms, aid in clinical diagnosis, and develop novel treatment strategies for CKD. Previous studies have mainly focused on the regulation of gene expression or protein synthesis in CKD, thereby compelling us to conduct a meticulous analysis of transcriptomic and proteomic data from the UUO mouse model. Here, we have performed a unified analysis of CKD model by integrating transcriptomes and protein suites for the first time. Our study contributes to a deeper understanding of the pathogenesis of CKD and provides a basis for subsequent disease management and drug development.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratones , Animales , Transcriptoma , Fosforilación Oxidativa , Proteómica , Peroxisomas/metabolismo , Peroxisomas/patología , Perfilación de la Expresión Génica/métodos , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Riñón/metabolismo
5.
Ren Fail ; 46(1): 2331612, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38527916

RESUMEN

BACKGROUND: Circular RNAs (CircRNAs) have been shown to be involved in the development of chronic kidney disease (CKD). This study aimed to investigate the role of Circ1647 in renal fibrosis, which is a hallmark of CKD. METHODS: In this study, we established a unilateral ureteral obstruction (UUO) model and delivered Circ1647 RfxCas13d knockdown plasmid into renal parenchymal cells via retrograde injection through the ureter followed by electroporation. After that, the pathological changes were determined by Hematoxylin and Eosin. Meanwhile, Immunohistochemistry, qRT-PCR and Western blot were conducted to assess the degree of fibrosis. In addition, overexpressing of Circ1647 in renal tubular epithelial cells (TCMK1) was performed to investigate the underlying mechanisms of Circ1647. RESULTS: Our results displayed that electroporation-mediated knockdown of Circ1647 by RfxCas13d knockdown plasmid significantly inhibited renal fibrosis in UUO mice as evidenced by reduced expression of fibronectin and α-SMA (alpha-smooth muscle actin). Conversely, overexpression of Circ1647 in TCMK1 cells promoted the fibrosis. In terms of mechanism, Circ1647 may mediate the PI3K/AKT Signaling Pathway as demonstrated by the balance of the phosphorylation of PI3K and AKT in vivo and the aggravated phosphorylation of PI3K and AKT in vitro. These observations were corroborated by the effects of the PI3K inhibitor LY294002, which mitigated fibrosis post Circ1647 overexpression. CONCLUSION: Our study suggests that Circ1647 plays a significant role in renal fibrosis by mediating the PI3K/AKT signaling pathway. RfxCas13d-mediated inhibition of Circ1647 may serve as a therapeutic target for renal fibrosis in CKD.


Asunto(s)
ARN Circular , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Ratones , Fibrosis , Riñón/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología , ARN Circular/genética , ARN Circular/metabolismo
6.
Am J Physiol Cell Physiol ; 326(3): C935-C947, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284121

RESUMEN

The molecular basis of renal interstitial fibrosis, a major pathological feature of progressive kidney diseases, remains poorly understood. Autophagy has been implicated in renal fibrosis, but whether it promotes or inhibits fibrosis remains controversial. Moreover, it is unclear how autophagy is activated and sustained in renal fibrosis. The present study was designed to address these questions using the in vivo mouse model of unilateral ureteral obstruction and the in vitro model of hypoxia in renal tubular cells. Both models showed the activation of hypoxia-inducible factor-1 (HIF-1) and autophagy along with fibrotic changes. Inhibition of autophagy with chloroquine reduced renal fibrosis in unilateral ureteral obstruction model, whereas chloroquine and autophagy-related gene 7 knockdown decreased fibrotic changes in cultured renal proximal tubular cells, supporting a profibrotic role of autophagy. Notably, pharmacological and genetic inhibition of HIF-1 led to the suppression of autophagy and renal fibrosis in these models. Mechanistically, knock down of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a downstream target gene of HIF, decreased autophagy and fibrotic changes during hypoxia in BUMPT cells. Together, these results suggest that HIF-1 may activate autophagy via BNIP3 in renal tubular cells to facilitate the development of renal interstitial fibrosis.NEW & NOTEWORTHY Autophagy has been reported to participate in renal fibrosis, but its role and underlying activation mechanism is unclear. In this study, we report the role of HIF-1 in autophagy activation in models of renal fibrosis and further investigate the underlying mechanism.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratones , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Factor 1 Inducible por Hipoxia , Enfermedades Renales/patología , Hipoxia , Autofagia/genética , Fibrosis , Cloroquina/farmacología
7.
J Biochem Mol Toxicol ; 38(1): e23617, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38079211

RESUMEN

Renal interstitial fibrosis (RIF) represents an irreversible and progressive pathological manifestation of chronic renal disease, which ultimately leads to end-stage renal disease. Long noncoding RNAs (lncRNAs) have been suggested to be involved in the progression of RIF. Small nucleolar RNA host gene 16 (SNHG16), a member of lncRNAs, has been found to be involved in the progression of pulmonary fibrosis. This paper first researched the effect of SNHG16 on renal fibrosis. We established a unilateral ureteral obstruction (UUO)-induced mouse RIF model by ligation of the left ureter to evaluate the biological function of SNHG16 in RIF. As a result, SNHG16 was upregulated in UUO-induced renal fibrotic tissues. Knockdown of SNHG16 inhibited RIF and reduced alpha-smooth muscle actin (α-SMA), fibronectin, and college IV expression. miR-205 was a target of SNHG16, and downregulated in UUO-induced renal fibrotic tissues. Inhibition of miR-205 promoted RIF and increased the expression of α-SMA, college IV, and fibronectin. Overexpression of SNHG16 promoted the UUO-induced RIF, but miR-205 abrogated this effect of SNHG16. Histone deacetylase 5 (HDAC5) showed high expression in UUO-induced renal fibrotic tissues. Knockdown of HDAC5 significantly reduced α-SMA, fibronectin, and college IV expression in renal tissues of UUO-induced mice. Inhibition of miR-205 promoted HDAC5 expression, but knockdown of SNHG16 inhibited HDAC5 expression in renal tissues of UUO-induced mice. In conclusion, SHNG16 is highly expressed in renal fibrotic tissues of UUO-induced mice. Knockdown of SHNG16 may prevent UUO-induced RIF by indirectly upregulating HDAC5 via targeting miR-205. SHNG16 may be novel target for treating renal fibrosis.


Asunto(s)
Enfermedades Renales , MicroARNs , ARN Largo no Codificante , Obstrucción Ureteral , Animales , Humanos , Ratones , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Histona Desacetilasas/genética , Enfermedades Renales/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
8.
Nephron ; 148(4): 245-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38142674

RESUMEN

INTRODUCTION: Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD: Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT: In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION: CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.


Asunto(s)
Nefropatías Diabéticas , Riñón/anomalías , ARN Largo no Codificante , Obstrucción Ureteral , Anomalías Urogenitales , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Abajo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/farmacología , Lipopolisacáridos , Hibridación Fluorescente in Situ , Macrófagos/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología , Nefropatías Diabéticas/metabolismo , Fibrosis , Inflamación/genética , Inflamación/patología
9.
PeerJ ; 11: e16301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953778

RESUMEN

Background: Chronic kidney disease (CKD) is a significant global health issue characterized by progressive loss of kidney function. Renal interstitial fibrosis (TIF) is a common feature of CKD, but current treatments are seldom effective in reversing TIF. Nicotinamide N-methyltransferase (NNMT) has been found to increase in kidneys with TIF, but its role in renal fibrosis is unclear. Methods: Using mice with unilateral ureteral obstruction (UUO) and cultured renal interstitial fibroblast cells (NRK-49F) stimulated with transforming growth factor-ß1 (TGF-ß1), we investigated the function of NNMT in vivo and in vitro. Results: We performed single-cell transcriptome sequencing (scRNA-seq) on the kidneys of mice and found that NNMT increased mainly in fibroblasts of UUO mice compared to sham mice. Additionally, NNMT was positively correlated with the expression of renal fibrosis-related genes after UUO injury. Knocking down NNMT expression reduced fibroblast activation and was accompanied by an increase in DNA methylation of p53 and a decrease in its phosphorylation. Conclusions: Our findings suggest that chronic kidney injury leads to an accumulation of NNMT, which might decrease p53 methylation, and increase the expression and activity of p53. We propose that NNMT promotes fibroblast activation and renal fibrosis, making NNMT a novel target for preventing and treating renal fibrosis.


Asunto(s)
Nicotinamida N-Metiltransferasa , Insuficiencia Renal Crónica , Obstrucción Ureteral , Fibrosis , Riñón/metabolismo , Nicotinamida N-Metiltransferasa/genética , Insuficiencia Renal Crónica/genética , Proteína p53 Supresora de Tumor/metabolismo , Obstrucción Ureteral/genética , Animales , Ratones
10.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893447

RESUMEN

Background and Objectives: Congenital ureteral stenosis is one of the leading causes of impaired urinary drainage and subsequent dilatation of the urinary collecting system, known as hydronephrosis or ureterohydronephrosis. The mechanism that leads to obstruction is not clearly known. Multiple studies in rat models have shown increased angiotensin II and TGFß levels in obstructed ureteral tissue. The aim of the study is to investigate the expression of fibrosis-related genes in obstructive and normal ureteral tissue. Material and Methods: It is a monocentric pilot study in which nineteen patients were selected prospectively. 17 patients underwent Hynes-Anderson pyeloplasty due to the PUJO; two patients underwent ureteroneocystostomy due to ureterovesical junction obstruction (UVJO); and six patients were chosen for the control group: five underwent nephrectomies due to the kidney tumor and one underwent upper pole heminephrectomy due to the duplex kidney with normal pyeloureteric junctions in all. Tissue RNA was chemically extracted after freezing the biopsy samples in liquid nitrogen, with cDNA synthesis performed immediately after nucleic acid isolation. qPCR was performed to evaluate the relative expression of Tgfb1, Mmp1, Timp1, Pai1, Ctgf, and Vegfa. Expression levels of the Gapdh and Gpi genes (geometric average) were used to calculate the relative expression of the investigated genes. Outliers were removed prior to calculating confidence intervals for the experimental groups, and a Wilcoxon rank-sum test was performed to determine the statistical significance of the differences. Results: Significant differences between healthy and stenotic tissue samples in Ctgf gene expression levels were observed, with the samples from afflicted tissue showing lower expression. No statistical difference in expression levels of Tgfb1, Timp1, Vegfa, Mmp1, and Pai1 was found. Conclusions: These findings suggest that tissue fibrosis, similar to other tissues and organs, is not the leading cause of stenosis, at least at the moment of surgery. Decreased CTGF expression is indicative of the developmental origin of obstruction.


Asunto(s)
Hidronefrosis , Obstrucción Ureteral , Humanos , Ratas , Animales , Metaloproteinasa 1 de la Matriz/genética , Proyectos Piloto , Constricción Patológica , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/cirugía
11.
Sci Rep ; 13(1): 18076, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872392

RESUMEN

Renal interstitial fibrosis (RIF) considered the primary irreversible cause of chronic kidney disease. Recently, accumulating studies demonstrated that lncRNAs play an important role in the pathogenesis of RIF. However, the underlying exact mechanism of lncRNA MALAT1 in RIF remains barely known. Here, the aim of our study was to investigate the dysregulate expression of lncRNA MALAT1 in TGF-ß1 treated HK2/NRK-49F cells and unilateral ureteral obstruction (UUO) mice model, defining its effects on HK2/NRK-49F cells and UUO mice fibrosis process through the miR-124-3p/ITGB1 signaling axis. It was found that lncRNA MALAT1 and ITGB1 was significantly overexpression, while miR-124-3p was downregulated in HK2/NRK-49F cells induced by TGF-ß1 and in UUO mice model. Moreover, knockdown of lncRNA MALAT1 remarkably downregulated the proteins level of fibrosis-related markers, ITGB1, and upregulated the expression of epithelial marker E-cadherin. Consistently, mechanistic studies showed that miR-124-3p can directly binds to lncRNA MALAT1 and ITGB1. And the protect effect of Len-sh-MALAT1 on fibrosis related protein levels could be partially reversed by co-transfected with inhibitor-miR-124-3p. Moreover, the expression trend of LncRNA MALAT1/miR-124-3p/ITGB1 in renal tissues of patients with obstructive nephropathy (ON) was consistent with the results of cell and animal experiments. Taken together, these results indicated that lncRNA MALAT1 could promote RIF process in vitro and in vivo via the miR-124-3p/ITGB1 signaling pathway. These findings suggest a new regulatory pathway involving lncRNA MALAT1, which probably serves as a potential therapeutic target for RIF.


Asunto(s)
Enfermedades Renales , MicroARNs , ARN Largo no Codificante , Obstrucción Ureteral , Animales , Humanos , Ratones , Fibrosis , Enfermedades Renales/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
12.
Cells ; 12(10)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37408260

RESUMEN

DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain proteins that exert transcriptional and translational activities in the cell via their ability to bind and regulate mRNA. To investigate the role of DbpA in kidney disease, we utilized the murine unilateral ureter obstruction (UUO) model, which recapitulates many features of obstructive nephropathy seen in humans. We observed that DbpA protein expression is induced within the renal interstitium following disease induction. Compared with wild-type animals, obstructed kidneys from Ybx3-deficient mice are protected from tissue injury, with a significant reduction in the number of infiltrating immune cells as well as in extracellular matrix deposition. RNAseq data from UUO kidneys show that Ybx3 is expressed by activated fibroblasts, which reside within the renal interstitium. Our data support a role for DbpA in orchestrating renal fibrosis and suggest that strategies targeting DbpA may be a therapeutic option to slow disease progression.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Animales , Ratones , Respuesta al Choque por Frío , Proteínas de Unión al ADN/metabolismo , Fibrosis , Enfermedades Renales/patología , Túbulos Renales/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética
13.
Kidney Int ; 104(4): 769-786, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482091

RESUMEN

Tubulointerstitial fibrosis is considered the final convergent pathway of progressive chronic kidney diseases (CKD) regardless of etiology. However, mechanisms underlying kidney injury-induced fibrosis largely remain unknown. Recent studies have indicated that transcriptional intermediary factor 1γ (TIF1γ) inhibits the progression of fibrosis in other organs. Here, we found that TIF1γ was highly expressed in the cytoplasm and nucleus of the kidney proximal tubule. Interestingly, we found tubular TIF1γ expression was decreased in patients with CKD, including those with diabetes, hypertension, and IgA nephropathy, and in mouse models with experimental kidney fibrosis (unilateral ureteral obstruction [UUO], folic acid nephropathy [FAN], and aristolochic acid-induced nephrotoxicity). Tubule-specific knock out of TIF1γ in mice exacerbated UUO- and FAN-induced tubular cell polyploidy and subsequent fibrosis, whereas overexpression of kidney TIF1γ protected mice against kidney fibrosis. Mechanistically, in tubular epithelial cells, TIF1γ exerted an antifibrotic role via transforming growth factor-ß (TGF-ß)-dependent and -independent signaling. TIF1γ hindered TGF-ß signaling directly by inhibiting the formation and activity of the transcription factor Smad complex in tubular cells, and we discovered that TIF1γ suppressed epidermal growth factor receptor (EGFR) signaling upstream of TGF-ß signaling in tubular cells by ubiquitylating EGFR at its lysine 851/905 sites thereby promoting EGFR internalization and lysosomal degradation. Pharmacological inhibition of EGFR signaling attenuated exacerbated polyploidization and the fibrotic phenotype in mice with tubule deletion of TIF1γ. Thus, tubular TIF1γ plays an important role in kidney fibrosis by suppressing profibrotic EGFR and TGF-ß signaling. Hence, our findings suggest that maintaining homeostasis of tubular TIF1γ may be a new therapeutic option for treating tubulointerstitial fibrosis and subsequent CKD.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Receptores ErbB/genética , Fibrosis , Riñón/metabolismo , Análisis de Mediación , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo
14.
J Transl Med ; 21(1): 326, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194066

RESUMEN

BACKGROUND: Renal tubulointerstitial fibrosis is the hallmark of various chronic kidney diseases. Symmetric dimethylarginine (SDMA) is an independent cardiovascular risk factor in patients with chronic kidney diseases, which is mostly excreted through renal tubules. However, the effect of SDMA on kidneys in a pathological condition is currently unknown. In this study, we investigated the role of SDMA in renal tubulointerstitial fibrosis and explored its underlying mechanisms. METHODS: Mouse unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) models were established to study renal tubulointerstitial fibrosis. SDMA was injected into kidneys through ureter retrogradely. TGF-ß stimulated human renal epithelial (HK2) cells were used as an in vitro model and treated with SDMA. Signal transducer and activator of transcription-4 (STAT4) was inhibited by berbamine dihydrochloride or siRNA or overexpressed by plasmids in vitro. Masson staining and Western blotting were performed to evaluate renal fibrosis. Quantitative PCR was performed to validate findings derived from RNA sequencing analysis. RESULTS: We observed that SDMA (from 0.01 to 10 µM) dose-dependently inhibited the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Intrarenal administration of SDMA (2.5 µmol/kg or 25 µmol/kg) dose-dependently attenuated renal fibrosis in UUO kidneys. A significant increase in SDMA concentration (from 19.5 to 117.7 nmol/g, p < 0.001) in mouse kidneys was observed after renal injection which was assessed by LC-MS/MS. We further showed that intrarenal administration of SDMA attenuated renal fibrosis in UIRI induced mouse fibrotic kidneys. Through RNA sequencing analysis, we found that the expression of STAT4 was reduced by SDMA in UUO kidneys, which was further confirmed by quantitative PCR and Western blotting analysis in mouse fibrotic kidneys and renal cells. Inhibition of STAT4 by berbamine dihydrochloride (0.3 mg/ml or 3.3 mg/ml) or siRNA reduced the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Furthermore, blockage of STAT4 attenuated the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. Conversely, overexpression of STAT4 reversed the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. CONCLUSION: Taken together, our study indicates that renal SDMA ameliorates renal tubulointerstitial fibrosis through inhibition of STAT4.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Humanos , Ratones , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedades Renales/complicaciones , Riñón/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología , Insuficiencia Renal Crónica/patología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis , ARN Interferente Pequeño , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Transcripción STAT4/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166755, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196860

RESUMEN

Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERß) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERß during RF progression in patients and animal models with CKD. We found that ERß was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERß deficiency markedly exacerbated, whereas ERß activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERß in RF. In addition, ERß activation inhibited TGF-ß1/Smad3 signaling, while loss of renal ERß was associated with overactivation of the TGF-ß1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERß and RF. Mechanistically, activation of ERß competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERß exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERß may represent as a promising therapeutic agent for RF.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Ratones , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Fibrosis , Riñón/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo
16.
Am J Physiol Renal Physiol ; 324(6): F581-F589, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141146

RESUMEN

Chronic kidney disease (CKD) is a major health problem. Kidney fibrosis is a hallmark and final common pathway of CKD. The Hippo/yes-associated protein (YAP) pathway regulates organ size, inflammation, and tumorigenesis. Our previous study demonstrated tubular YAP activation by tubule-specific double knockout of mammalian STE20-like protein kinase 1/2 (Mst1/2) induced CKD in mice, but the underlying mechanisms remain to be fully elucidated. Activator protein (AP)-1 activation was found to promote tubular atrophy and tubulointerstitial fibrosis. Therefore, we studied whether YAP regulates AP-1 expression in the kidney. We found that expression of various AP-1 components was induced in kidneys subjected to unilateral ureteric obstruction and in Mst1/2 double knockout kidneys, and these inductions were blocked by deletion of Yap in tubular cells, with Fosl1 being most affected compared with other AP-1 genes. Inhibition of Yap also most highly suppressed Fosl1 expression among AP-1 genes in HK-2 and IMCD3 renal tubular cells. YAP bound to the Fosl1 promoter and promoted Fosl1 promoter-luciferase activity. Our results suggest that YAP controls AP-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.NEW & NOTEWORTHY Yes-associated protein (YAP) activation leads to tubular injury, renal inflammation, and fibrosis, but the underlying mechanisms are not fully understood. We now provide genetic evidence that YAP promotes activator protein-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Inflamación/metabolismo , Riñón/metabolismo , Mamíferos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Proteínas Señalizadoras YAP
17.
Nefrologia (Engl Ed) ; 43 Suppl 2: 21-31, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37179212

RESUMEN

BACKGROUND: Renal fibrosis is a basic pathological change of almost all chronic kidney disorders. Epithelial-mesenchymal transition (EMT) and excessive extracellular matrix (ECM) accumulation play a crucial role in the process of fibrosis. METHODS: Western blot and qRT-PCR were accomplished to analyze the expression levels of target proteins and genes, respectively. The fibrotic levels in the renal tissues of rats were confirmed utilizing Masson staining. Expression of ECM-related α-SMA in the renal tissues was determined by immunohistochemistry assay. The combination of GRB2 associated binding protein 1 (GAB1) and miR-200a was ensured by starBase database and luciferase reporter assay. RESULTS: Our data uncovered that miR-200a was downregulated, but GAB1 was upregulated in the renal tissues of the rat experienced unilateral ureteral obstruction (UUO). Overexpression of miR-200a improved tissues fibrosis, suppressed GAB1 expression and ECM deposition, and inactivated Wnt/ß-catenin in UUO rats. Moreover, miR-200a expression was inhibited, while GAB1 expression was facilitated in the TGF-ß1-induced HK-2 cells. In TGF-ß1-induced HK-2 cells, miR-200a overexpression inhibited GAB1 expression, also declined ECM-related proteins and mesenchymal markers expression. Oppositely, miR-200a overexpression facilitated epithelial marker expression in the TGF-ß1-induced HK-2 cells. Next, the data revealed that miR-200a inhibited GAB1 expression through binding to the mRNA 3'-UTR of GAB1. Increasing of GAB1 reversed the regulation of miR-200a to GAB1 expression, Wnt/ß-catenin signaling activation, EMT and ECM accumulation. CONCLUSION: Overall, miR-200a increasing improved renal fibrosis through attenuating EMT and ECM accumulation by limiting Wnt/ß-catenin signaling via sponging GAB1, indicating miR-200a may be a promising objective for renal disease therapy.


Asunto(s)
Enfermedades Renales , MicroARNs , Obstrucción Ureteral , Ratas , Animales , MicroARNs/genética , Regulación hacia Arriba , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Factor de Crecimiento Transformador beta1 , Fibrosis , Enfermedades Renales/genética , Proteínas de la Matriz Extracelular
18.
Sci Rep ; 13(1): 6341, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072467

RESUMEN

Cannabidiol (CBD) is thought to have multiple biological effects, including the ability to attenuate inflammatory processes. Cannabigerols (CBGA and its decarboxylated CBG molecule) have pharmacological profiles similar to CBD. The endocannabinoid system has recently emerged to contribute to kidney disease, however, the therapeutic properties of cannabinoids in kidney disease remain largely unknown. In this study, we determined whether CBD and CBGA can attenuate kidney damage in an acute kidney disease model induced by the chemotherapeutic cisplatin. In addition, we evaluated the anti-fibrosis effects of these cannabinoids in a chronic kidney disease model induced by unilateral ureteral obstruction (UUO). We find that CBGA, but not CBD, protects the kidney from cisplatin-induced nephrotoxicity. CBGA also strongly suppressed mRNA of inflammatory cytokines in cisplatin-induced nephropathy, whereas CBD treatment was only partially effective. Furthermore, both CBGA and CBD treatment significantly reduced apoptosis through inhibition of caspase-3 activity. In UUO kidneys, both CBGA and CBD strongly reduced renal fibrosis. Finally, we find that CBGA, but not CBD, has a potent inhibitory effect on the channel-kinase TRPM7. We conclude that CBGA and CBD possess reno-protective properties, with CBGA having a higher efficacy, likely due to its dual anti-inflammatory and anti-fibrotic effects paired with TRPM7 inhibition.


Asunto(s)
Cannabinoides , Insuficiencia Renal Crónica , Canales Catiónicos TRPM , Obstrucción Ureteral , Humanos , Cisplatino/farmacología , Riñón/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética , Insuficiencia Renal Crónica/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Cannabinoides/farmacología , Fibrosis , Proteínas Serina-Treonina Quinasas
19.
J Am Soc Nephrol ; 34(6): 1105-1119, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995132

RESUMEN

SIGNIFICANCE STATEMENT: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.


Asunto(s)
Hidronefrosis , Obstrucción Ureteral , Reflujo Vesicoureteral , Humanos , Variaciones en el Número de Copia de ADN , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Reflujo Vesicoureteral/diagnóstico , Reflujo Vesicoureteral/genética , Pelvis Renal/patología
20.
Kidney Int ; 103(5): 886-902, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36804379

RESUMEN

Progressive fibrosis is a hallmark of chronic kidney disease, but we lack effective treatments to halt this destructive process. Micropeptides (peptides of no more than 100 amino acids) encoded by small open reading frames represent a new class of eukaryotic regulators. Here, we describe that the micropeptide regulator of ß-oxidation (MOXI) regulates kidney fibrosis. MOXI expression was found to be up-regulated in human fibrotic kidney disease, and this correlated with the degree of fibrosis and loss of kidney function. MOXI was expressed in the cytoplasm and mitochondria of cultured tubular epithelial cells and translocated to the nucleus upon Transforming Growth Factor-ß1 stimulation. Deletion of Moxi protected mice against fibrosis and inflammation in the folic acid and unilateral ureteral obstruction models. As a potential molecular therapy, treatment with an antisense MOXI oligonucleotide effectively knocked-down MOXI expression and protected against kidney fibrosis in both models. Bimolecular fluorescence complementation identified the enzyme N-acetyltransferase 14 (Nat14) and transcription factor c-Jun as MOXI binding partners. The MOXI/Nat14/c-Jun complex enhances basal and Transforming Growth Factor-ß1 induced collagen I gene promoter activity. Phosphorylation at T49 is required for MOXI nuclear localization and for complex formation with Nat14 and c-Jun. Furthermore, mice with a MoxiT49A point mutation were protected in the models of kidney fibrosis. Thus, our studies demonstrate a key role for the micropeptide MOXI in kidney fibrosis and identify a new function of MOXI in forming a transcriptional complex with Nat14 and c-Jun.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Animales , Humanos , Ratones , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Fibrosis , Riñón/patología , Enfermedades Renales/patología , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Micropéptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA