Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.037
Filtrar
1.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471539

RESUMEN

Gametogenesis is the process through which germ cells differentiate into sexually dimorphic gametes, eggs and sperm. In the teleost fish medaka (Oryzias latipes), a germ cell-intrinsic sex determinant, foxl3, triggers germline feminization by activating two genetic pathways that regulate folliculogenesis and meiosis. Here, we identified a pathway involving a dome-shaped microtubule structure that may be the basis of oocyte polarity. This structure was first established in primordial germ cells in both sexes, but was maintained only during oogenesis and was destabilized in differentiating spermatogonia under the influence of Sertoli cells expressing dmrt1. Although foxl3 was dispensable for this pathway, dazl was involved in the persistence of the microtubule dome at the time of gonocyte development. In addition, disruption of the microtubule dome caused dispersal of bucky ball RNA, suggesting the structure may be prerequisite for the Balbiani body. Collectively, the present findings provide mechanistic insight into the establishment of sex-specific polarity through the formation of a microtubule structure in germ cells, as well as clarifying the genetic pathways implementing oocyte-specific characteristics.


Asunto(s)
Oryzias , Animales , Femenino , Masculino , Oryzias/genética , Semen , Células Germinativas/metabolismo , Gametogénesis , Oogénesis/fisiología
2.
Cell Rep ; 43(3): 113863, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457339

RESUMEN

Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.


Asunto(s)
Drosophila melanogaster , Oogénesis , Animales , Femenino , Drosophila melanogaster/fisiología , Oogénesis/fisiología , Ovulación , Oocitos , Lipoproteínas
3.
Dev Biol ; 510: 17-28, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423203

RESUMEN

From insects to humans, oogenesis is tightly linked to nutritional input, yet little is known about how whole organism physiology matches dietary changes with oocyte development. Considering that diet-induced adipose tissue dysfunction is associated with an increased risk for fertility problems, and other obesity-associated pathophysiologies, it is critical to decipher the cellular and molecular mechanisms linking adipose nutrient sensing to remote control of the ovary and other tissues. Our previous studies in Drosophila melanogaster have shown that amino acid sensing, via the amino acid response pathway and mTOR-mediated signaling function within adipocytes to control germline stem cell maintenance and ovulation, respectively. Additionally, we demonstrated that insulin/insulin-like growth factor signaling within adipocytes employs distinct effector axes, PI3K/Akt1-dependent and -independent, downstream of insulin receptor activity to mediate fat-to-ovary communication. Here, we report that the Ras/MAPK signaling axis functions in adipocytes to regulate early germline cyst survival and ovulation of mature oocytes but is not important for germline stem cell maintenance or the progression through vitellogenesis. Thus, these studies uncover the complexity of signaling pathway activity that mediates inter-organ communication.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Femenino , Drosophila melanogaster/metabolismo , Ovario/metabolismo , Transducción de Señal/fisiología , Oogénesis/fisiología , Ovulación , Tejido Adiposo/metabolismo , Células Germinativas/metabolismo , Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo
4.
BMC Med Genomics ; 17(1): 24, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238750

RESUMEN

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a common endocrine disorder that affects 6-20% of women of reproductive age. One of the symptoms of PCOS is hyperandrogenism, which can impair follicular development. This disruption can cause issues with the development of oocytes and the growth of embryos. Although the exact cause of PCOS is not yet fully understood, studying the gene expression pattern of cumulus cells, which play a crucial role in the maturation and quality of oocytes, could help identify the genes associated with oocyte maturation in PCOS women. Through indirect activation of APC/Cdc20, RBX1 enables oocytes to bypass the GV (germinal vesicles) stage and advance to the MII (metaphase II) stage. our other gene is the BAMBI gene which stimulates WNT signaling, that is a crucial pathway for healthy ovarian function. This study aims to explore the expression level of the RBX1 and BAMBI genes between GV and MII oocytes of PCOS and non-PCOS groups. METHODS: In this experiment, we gathered the cumulus cells of MII (38 cases and 33 control) and GV (38 cases and 33 control) oocytes from women with/without PCOS. Besides, quantitative RT-PCR was used to assess the semi-quantitative expression of BAMBI and RBX1. RESULTS: According to our research, the expression level of RBX1 and BAMBI in MII and GV cumulus cells of PCOS patients was significantly lower than that in non-PCOS ones. CONCLUSION: This research raises the possibility of RBX1 and BAMBI involvement in oocyte quality in PCOS women.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/genética , Oogénesis/fisiología , Oocitos/metabolismo , Expresión Génica , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
5.
Hum Reprod Update ; 30(1): 26-47, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37697674

RESUMEN

BACKGROUND: Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE: The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS: An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES: ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS: Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.


Asunto(s)
Factor Intrinseco , Transcriptoma , Niño , Humanos , Femenino , Factor Intrinseco/genética , Factor Intrinseco/metabolismo , Factor Intrinseco/farmacología , Oocitos/fisiología , Oogénesis/fisiología , Perfilación de la Expresión Génica , Proteínas/metabolismo
6.
Hum Reprod Update ; 30(1): 3-25, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37639630

RESUMEN

BACKGROUND: While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE: The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS: Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES: Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS: Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/fisiología , Oogénesis/fisiología , Folículo Ovárico
7.
Reprod Sci ; 31(5): 1234-1245, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38160209

RESUMEN

This paper will review a remarkable new approach to in vitro maturation "IVM" of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few "core genes" in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation "IVD" which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity "IVG" which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone "IVD" and "IVG" in vivo, and therefore are ready for IVM.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oogénesis , Ovario , Femenino , Animales , Oogénesis/fisiología , Humanos , Ovario/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Ratones
8.
Reprod Fertil Dev ; 36(2): 133-148, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064189

RESUMEN

The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.


Asunto(s)
Oocitos , Semen , Masculino , Femenino , Animales , Bovinos , Folículo Ovárico/fisiología , Oogénesis/fisiología , Técnicas Reproductivas Asistidas/veterinaria
9.
Commun Biol ; 6(1): 1287, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123715

RESUMEN

Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.


Asunto(s)
Drosophila , Oogénesis , Animales , Femenino , Drosophila/metabolismo , Oogénesis/fisiología , Ovario , Células Madre/metabolismo , Células Germinativas/metabolismo
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 821-826, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37927024

RESUMEN

Extracellular vesicles (EV),nanoscale vesicles encapsulated by phospholipid bilayers,are rich in biological molecules such as nucleic acids,metabolites,proteins,and lipids derived from parental cells.They are mainly involved in intercellular communication,signal transmission,and material transport and affect the functions of target cells.Ovulation disorders account for a higher proportion in the factors causing infertility which demonstrates increasing incidence year by year.Non-coding RNAs participate in a series of physiological and pathological processes of follicular development,playing a key role in female infertility.This review systematically introduces the types and biological roles of EV and elaborates on the regulation of follicular development from the effects of EV and non-coding RNAs on granulosa cell function,oocyte maturation,ovulation,luteal formation,and steroid hormone synthesis,providing a new idea and a breakthrough point for the diagnosis and treatment of infertility.


Asunto(s)
Vesículas Extracelulares , Infertilidad , Femenino , Humanos , Oogénesis/fisiología , Células de la Granulosa , Vesículas Extracelulares/fisiología , Comunicación Celular , ARN no Traducido
11.
Nat Commun ; 14(1): 6532, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848452

RESUMEN

N6-methyladenosine (m6A) maintains maternal RNA stability in oocytes. One regulator of m6A, ALKBH5, reverses m6A deposition and is essential in RNA metabolism. However, the specific role of ALKBH5 in oocyte maturation remains elusive. Here, we show that Alkbh5 depletion causes a wide range of defects in oocyte meiosis and results in female infertility. Temporal profiling of the maternal transcriptomes revealed striking RNA accumulation in Alkbh5-/- oocytes during meiotic maturation. Analysis of m6A dynamics demonstrated that ALKBH5-mediated m6A demethylation ensures the timely degradation of maternal RNAs, which is severely disrupted following Alkbh5-/- depletion. A distinct subset of transcripts with persistent m6A peaks are recognized by the m6A reader IGF2BP2 and thus remain stabilized, resulting in impaired RNA clearance. Additionally, reducing IGF2BP2 in Alkbh5-depleted oocytes partially rescued these defects. Overall, this work identifies ALKBH5 as a key determinant of oocyte quality and unveil the facilitating role of ALKBH5-mediated m6A removal in maternal RNA decay.


Asunto(s)
Oocitos , Oogénesis , Femenino , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Meiosis/genética , Metilación , Oocitos/metabolismo , Oogénesis/genética , Oogénesis/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
Mol Reprod Dev ; 90(6): 369-377, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37486100

RESUMEN

Throughout the reproductive life of women, cumulus cells (CC) protect the dormant oocyte from damage, act as sensors of the follicular microenvironment, and act as a gatekeeper for oocyte developmental potential. One such mechanism relies on the hypoxia-tolerance response, which, with age, decreases systematically, including in the ovary. We aimed to evaluate the association between gene expression related to hypoxia and aging in CC and reproductive results in in vitro fertilization cycles. We recruited 94 women undergoing controlled ovarian stimulation. Total RNA was extracted from pooled CCs collected after oocyte pick-up (OPU) and reverse-transcribed to complementary DNA using random hexamers to test 14 genes related to hypoxia response via HIF1α activation, oxidative stress, and angiogenic responses. The expression of CLU, NOS2, and TXNIP had a positive correlation with age (rs = 0.25, rs = 0.24, and rs = 0.35, respectively). Additionally, NOS2 and HMOX1 expression correlated positively with the retrieval of immature oocytes (rs = 0.22 and rs = 0.40, respectively). Moreover, VEGFC levels decreased overall with increasing fertilization rate, independently of age (rs = -0.29). We found that the fertilization potential of a cohort of oocytes is related to the ability of CC to respond to oxidative stress and hypoxia with age, pointing at NOS2, HMOX1, and VEGFC expression as markers for oocyte maturation and fertilization success.


Asunto(s)
Células del Cúmulo , Oogénesis , Femenino , Humanos , Células del Cúmulo/metabolismo , Fertilización/fisiología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología
13.
Physiol Rev ; 103(4): 2623-2677, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171807

RESUMEN

Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.


Asunto(s)
Oocitos , Folículo Ovárico , Animales , Humanos , Femenino , Oocitos/fisiología , Folículo Ovárico/metabolismo , Ovario/metabolismo , Oogénesis/fisiología , Mamíferos/fisiología , Envejecimiento
14.
WIREs Mech Dis ; 15(5): e1613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37248206

RESUMEN

Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.


Asunto(s)
Calcio , Oocitos , Embarazo , Femenino , Humanos , Calcio/metabolismo , Oogénesis/fisiología , Envejecimiento , Aneuploidia
15.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
16.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944420

RESUMEN

The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.


Asunto(s)
Folículo Ovárico , Seudópodos , Femenino , Animales , Ratones , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología , Células Germinativas , Miosinas
17.
Front Endocrinol (Lausanne) ; 14: 1131256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817597

RESUMEN

Well-controlled metabolism is the prerequisite for optimal oocyte development. To date, numerous studies have focused mainly on the utilization of exogenous substrates by oocytes, whereas the underlying mechanism of intrinsic regulation during meiotic maturation is less characterized. Herein, we performed an integrated analysis of parallel metabolomics and transcriptomics by isolating porcine oocytes at three time points, cooperatively depicting the global picture of the metabolic patterns during maturation. In particular, we identified the novel metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the active one-carbon metabolism and a progressive decline in nucleotide metabolism. Collectively, the current study not only provides a comprehensive multiple omics data resource, but also may facilitate the discovery of molecular biomarkers that could be used to predict and improve oocyte quality.


Asunto(s)
Oocitos , Transcriptoma , Porcinos , Animales , Oocitos/metabolismo , Oogénesis/fisiología , Perfilación de la Expresión Génica , Meiosis
18.
Methods Mol Biol ; 2626: 89-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715901

RESUMEN

Tissue homeostasis is dependent on the interaction between various organs within an organism in response to physiological inputs. The adult Drosophila melanogaster ovary is sensitive to environmental challenges and has recently been shown to be regulated by signaling from peripheral organs. To dissect the intricate coordination between overall organism health and reproduction, it is necessary to meticulously characterize both experimental tools and oogenesis processes. This chapter provides a guide for the careful analysis of interorgan communication in regulating oogenesis in adult Drosophila melanogaster.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila melanogaster , Oogénesis/fisiología , Ovario/fisiología , Proteínas de Drosophila/genética
19.
J Biol Chem ; 299(1): 102731, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423685

RESUMEN

Zinc fluctuations regulate key steps in late oocyte and preimplantation embryo development; however, roles for zinc in preceding stages in early ovarian follicle development, when cooperative interactions exist between the oocyte and somatic cells, are unknown. To understand the roles of zinc during early follicle development, we applied single cell X-ray fluorescence microscopy, a radioactive zinc tracer, and a labile zinc probe to measure zinc in individual mouse oocytes and associated somatic cells within early follicles. Here, we report a significant stage-specific increase and compartmental redistribution in oocyte zinc content upon the initiation of early follicle growth. The increase in zinc correlates with the increased expression of specific zinc transporters, including two that are essential in oocyte maturation. While oocytes in follicles exhibit high tolerance to pronounced changes in zinc availability, somatic survival and proliferation are significantly more sensitive to zinc chelation or supplementation. Finally, transcriptomic, proteomic, and zinc loading analyses reveal enrichment of zinc targets in the ubiquitination pathway. Overall, these results demonstrate that distinct cell type-specific zinc regulations are required for follicle growth and indicate that physiological fluctuation in the localization and availability of this inorganic cofactor has fundamental functions in early gamete development.


Asunto(s)
Folículo Ovárico , Zinc , Animales , Femenino , Ratones , Oocitos/metabolismo , Oogénesis/fisiología , Folículo Ovárico/fisiología , Proteómica , Zinc/metabolismo
20.
Dev Dyn ; 252(3): 415-428, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36308715

RESUMEN

BACKGROUND: Reproductive capacity in many organisms is maintained by germline stem cells (GSCs). A complex regulatory network influences stem cell fate, including intrinsic factors, local signals, and hormonal and nutritional cues. Posttranscriptional regulatory mechanisms ensure proper cell fate transitions, promoting germ cell differentiation to oocytes. As essential RNA binding proteins with constitutive functions in RNA metabolism, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been implicated in GSC function and axis specification during oocyte development. HnRNPs support biogenesis, localization, maturation, and translation of nascent transcripts. Whether and individual hnRNPs specifically regulate GSC function has yet to be explored. RESULTS: We demonstrate that hnRNPs are expressed in distinct patterns in the Drosophila germarium. We show that three hnRNPs, squid, hephaestus, and Hrb27C are cell-autonomously required in GSCs for their maintenance. Although these hnRNPs do not impact adhesion of GSCs to adjacent cap cells, squid and hephaestus (but not Hrb27C) are necessary for proper bone morphogenetic protein signaling in GSCs. Moreover, Hrb27C promotes proper GSC proliferation, whereas hephaestus promotes cyst division. CONCLUSIONS: We find that hnRNPs are independently and intrinsically required in GSCs for their maintenance in adults. Our results support the model that hnRNPs play unique roles in stem cells essential for their self-renewal and proliferation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Diferenciación Celular , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Oocitos , Oogénesis/fisiología , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA