RESUMEN
Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P. halstedii genomic DNA, targeting the ribosomal Large Subunit (LSU). These primers were verified by in silico analysis and experimental validation using both target and non-target species' DNAs. Optimizations encompassing reaction conditions (temperature, time) and component concentrations (magnesium, Bst DNA polymerase, primers, and dNTP) were determined. Validation of these optimizations was performed by agarose gel electrophoresis. Furthermore, various colorimetric chemicals (Neutral Red, Hydroxynaphthol Blue, SYBR Safe, Thiazole Green) were evaluated to facilitate method analysis, and the real-time analysis has been optimized, presenting multiple approaches for detecting sunflower downy mildew using the LAMP technique. The analytical sensitivity of the method was confirmed by detecting P. halstedii DNA concentrations as low as 0.5 pg/µl. This pioneering study, establishing P. halstedii detection through the LAMP method, stands as unique in its field. The precision, robustness, and practicality of the LAMP protocol make it an ideal choice for studies focusing on sunflower mildew, emphasizing its recommended use due to its operational ease and reliability.
Asunto(s)
Helianthus , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/microbiología , Helianthus/microbiología , Técnicas de Diagnóstico Molecular/métodos , Cartilla de ADN/genética , Oomicetos/genética , Sensibilidad y EspecificidadRESUMEN
Microscopic imaging for studying plant-pathogen interactions is limited by its reliance on invasive histological techniques, like clearing and staining, or, for in vivo imaging, on complicated generation of transgenic pathogens. We present real-time 3D in vivo visualization of pathogen dynamics with label-free optical coherence tomography. Based on intrinsic signal fluctuations as tissue contrast we image filamentous pathogens and a nematode in vivo in 3D in plant tissue. We analyze 3D images of lettuce downy mildew infection (Bremia lactucae) to obtain hyphal volume and length in three different lettuce genotypes with different resistance levels showing the ability for precise (micro) phenotyping and quantification of the infection level. In addition, we demonstrate in vivo longitudinal imaging of the growth of individual pathogen (sub)structures with functional contrast on the pathogen micro-activity revealing pathogen vitality thereby opening a window on the underlying molecular processes.
Asunto(s)
Interacciones Huésped-Patógeno , Imagenología Tridimensional , Lactuca , Enfermedades de las Plantas , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Enfermedades de las Plantas/microbiología , Lactuca/microbiología , Imagenología Tridimensional/métodos , Animales , Oomicetos/genética , Oomicetos/patogenicidad , Hifa , Nematodos , Hojas de la Planta/microbiologíaRESUMEN
Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Identifying and characterizing pathogens effectors is crucial towards their improved control. Because of their poor sequence conservation, effector identification is challenging, and current methods generate too many candidates without indication for prioritizing experimental studies. In most phyla, effectors contain specific sequence motifs which influence their localization and targets in the plant. Therefore, there is an urgent need to develop bioinformatics tools tailored for pathogen effectors. To circumvent these limitations, we have developed MOnSTER a specific tool that identifies clusters of motifs of protein sequences (CLUMPs). MOnSTER can be fed with motifs identified by de novo tools or from databases such as Pfam and InterProScan. The advantage of MOnSTER is the reduction of motif redundancy by clustering them and associating a score. This score encompasses the physicochemical properties of AAs and the motif occurrences. We built up our method to identify discriminant CLUMPs in oomycetes effectors. Consequently, we applied MOnSTER on plant parasitic nematodes and identified six CLUMPs in about 60% of the known nematode candidate parasitism proteins. Furthermore, we found co-occurrences of CLUMPs with protein domains important for invasion and pathogenicity. The potentiality of this tool goes beyond the effector characterization and can be used to easily cluster motifs and calculate the CLUMP-score on any set of protein sequences.
Asunto(s)
Secuencias de Aminoácidos , Biología Computacional , Animales , Biología Computacional/métodos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Plantas/parasitología , Oomicetos/genética , Oomicetos/metabolismo , Nematodos/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas del Helminto/química , Programas InformáticosRESUMEN
Effector secretion by different routes mediates the molecular interplay between host plant and pathogen, but mechanistic details in eukaryotes are sparse. This may limit the discovery of new effectors that could be utilized for improving host plant disease resistance. In fungi and oomycetes, apoplastic effectors are secreted via the conventional endoplasmic reticulum (ER)-Golgi pathway, while cytoplasmic effectors are packaged into vesicles that bypass Golgi in an unconventional protein secretion (UPS) pathway. In Magnaporthe oryzae, the Golgi bypass UPS pathway incorporates components of the exocyst complex and a t-SNARE, presumably to fuse Golgi bypass vesicles to the fungal plasma membrane. Upstream, cytoplasmic effector mRNA translation in M. oryzae requires the efficient decoding of AA-ending codons. This involves the modification of wobble uridines in the anticodon loop of cognate tRNAs and fine-tunes cytoplasmic effector translation and secretion rates to maintain biotrophic interfacial complex integrity and permit host infection. Thus, plant-fungal interface integrity is intimately tied to effector codon usage, which is a surprising constraint on pathogenicity. Here, we discuss these findings within the context of fungal and oomycete effector discovery, delivery, and function in host cells. We show how cracking the codon code for unconventional cytoplasmic effector secretion in M. oryzae has revealed AA-ending codon usage bias in cytoplasmic effector mRNAs across kingdoms, including within the RxLR-dEER motif-encoding sequence of a bona fide Phytophthora infestans cytoplasmic effector, suggesting its subjection to translational speed control. By focusing on recent developments in understanding unconventional effector secretion, we draw attention to this important but understudied area of host-pathogen interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Oomicetos , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Oomicetos/patogenicidad , Oomicetos/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Resistencia a la Enfermedad/genética , Hongos/fisiología , Hongos/patogenicidad , Interacciones Huésped-Patógeno , Plantas/microbiologíaRESUMEN
Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model landsepi to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.
Asunto(s)
Productos Agrícolas , Resistencia a la Enfermedad , Enfermedades de las Plantas , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Agricultura , Vitis/genética , Vitis/microbiología , Oomicetos/fisiología , Oomicetos/genéticaRESUMEN
Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.
Asunto(s)
Microbiota , Oomicetos , Filogenia , Algas Marinas , Oomicetos/genética , Oomicetos/clasificación , Algas Marinas/microbiología , Microbiota/genética , ARN Ribosómico 18S/genética , Simbiosis , Biodiversidad , Eucariontes/genética , Eucariontes/clasificación , Variación GenéticaRESUMEN
Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.
Asunto(s)
Evolución Molecular , Oomicetos , Filogenia , Telómero , Telómero/genética , Oomicetos/genética , Oomicetos/patogenicidad , Virulencia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Pythium/genética , Pythium/patogenicidad , Phytophthora/genética , Phytophthora/patogenicidad , Cromosomas/genética , Plantas/microbiología , Plantas/genética , Genoma/genéticaRESUMEN
A real-time loop-mediated isothermal amplification (LAMP) assay for the detection of Bremia lactucae, the causal pathogen of lettuce downy mildew, was developed and validated to aid in-field detection of airborne inoculum. Assay specificity was confirmed against a range of other pathogenic oomycete and fungal spp., and sensitivity of the assay for the detection of DNA extracted from sporangia was evaluated. The B. lactucae LAMP assay reliably detected DNA equivalent to 1 spore/reaction (16.7 pg DNA/reaction). Following extraction of DNA from Rotorod air samplers, to which sporangial suspensions were added, the assay reliably detected 25 sporangia/Rotorod. Detection of airborne inoculum of B. lactucae collected through the season from air samplers deployed in-field in plots infected with B. lactucae and in commercial lettuce fields in Scotland over two growing seasons was assessed. The method can be deployed on samples collected from commercial lettuce production to inform disease management strategies and limit the use of unnecessary prophylactic pesticide applications.
Asunto(s)
Lactuca , Técnicas de Amplificación de Ácido Nucleico , Oomicetos , Enfermedades de las Plantas , Técnicas de Amplificación de Ácido Nucleico/métodos , Lactuca/microbiología , Enfermedades de las Plantas/microbiología , Oomicetos/genética , Oomicetos/aislamiento & purificación , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodosRESUMEN
BACKGROUND: Grapevine downy mildew, caused by Plasmopara viticola, is an economically important disease in Australia and worldwide. The application of fungicides is the main tool to control this disease. Frequent fungicide applications can lead to the selection of resistant P. viticola populations, which has negative impacts on the management of the disease. Identification of resistance and its prevalence is necessary to inform resistance management strategies. RESULTS: A total of 86 P. viticola isolates were collected between 2017 and 2022 from vineyards in 15 growing regions across Australia for four fungicide groups; phenylamide (PA, group 4), carboxylic acid amide (CAA, group 40), quinone outside inhibitor (QoI, group 11) and quinone outside inhibitor stigmatellin binding type (QoSI, group 45). Decreased phenotypic sensitivity was detected for all four groups, and resistance to metalaxyl-M (PA) and pyraclostrobin (QoI), was detected. Genetic analysis to detect the G143A (QoI) and G1105S (CAA) mutations using amplicon-based sequencing was performed for 239 and 65 isolates collected in 2014-2017 and 2017-2022, respectively. G143A was detected in 8% and 52% of isolates, respectively, with strong association to phenotypic resistance. However, G1105S was not detected in any isolates. CONCLUSION: Plasmopara viticola isolates in Australia with resistance to at least two fungicide groups have been detected, therefore it is necessary to adopt resistance management strategies where resistance has been detected. Vineyards should continue to be monitored to improve management strategies for downy mildew. © 2024 Society of Chemical Industry.
Asunto(s)
Fungicidas Industriales , Oomicetos , Enfermedades de las Plantas , Vitis , Fungicidas Industriales/farmacología , Vitis/microbiología , Australia , Enfermedades de las Plantas/microbiología , Oomicetos/genética , Oomicetos/efectos de los fármacos , Farmacorresistencia Fúngica/genética , MutaciónRESUMEN
FungiDB (https://fungidb.org) serves as a valuable online resource that seamlessly integrates genomic and related large-scale data for a wide range of fungal and oomycete species. As an integral part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org), FungiDB continually integrates both published and unpublished data addressing various aspects of fungal biology. Established in early 2011, the database has evolved to support 674 datasets. The datasets include over 300 genomes spanning various taxa (e.g. Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, as well as Albuginales, Peronosporales, Pythiales, and Saprolegniales). In addition to genomic assemblies and annotation, over 300 extra datasets encompassing diverse information, such as expression and variation data, are also available. The resource also provides an intuitive web-based interface, facilitating comprehensive approaches to data mining and visualization. Users can test their hypotheses and navigate through omics-scale datasets using a built-in search strategy system. Moreover, FungiDB offers capabilities for private data analysis via the integrated VEuPathDB Galaxy platform. FungiDB also permits genome improvements by capturing expert knowledge through the User Comments system and the Apollo genome annotation editor for structural and functional gene curation. FungiDB facilitates data exploration and analysis and contributes to advancing research efforts by capturing expert knowledge for fungal and oomycete species.
Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Hongos , Internet , Oomicetos , Oomicetos/genética , Hongos/genética , Biología Computacional/métodos , Genoma Fúngico , Genómica/métodos , Programas InformáticosRESUMEN
Interactions between various microbial pathogens including viruses, bacteria, fungi, oomycetes, and their plant hosts have traditionally been the focus of phytopathology. In recent years, a significant and growing interest in the study of eukaryotic microorganisms not classified among fungi or oomycetes has emerged. Many of these protists establish complex interactions with photosynthetic hosts, and understanding these interactions is crucial in understanding the dynamics of these parasites within traditional and emerging types of farming, including marine aquaculture. Many phytopathogenic protists are biotrophs with complex polyphasic life cycles, which makes them difficult or impossible to culture, a fact reflected in a wide gap in the availability of comprehensive genomic data when compared to fungal and oomycete plant pathogens. Furthermore, our ability to use available genomic resources for these protists is limited by the broad taxonomic distance that these organisms span, which makes comparisons with other genomic datasets difficult. The current rapid progress in genomics and computational tools for the prediction of protein functions and interactions is revolutionizing the landscape in plant pathology. This is also opening novel possibilities, specifically for a deeper understanding of protist effectors. Tools like AlphaFold2 enable structure-based function prediction of effector candidates with divergent protein sequences. In turn, this allows us to ask better biological questions and, coupled with innovative experimental strategies, will lead into a new era of effector research, especially for protists, to expand our knowledge on these elusive pathogens and their interactions with photosynthetic hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Fotosíntesis , Enfermedades de las Plantas , Plantas , Plantas/parasitología , Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Eucariontes/genética , Genómica , Oomicetos/fisiología , Oomicetos/patogenicidad , Oomicetos/genéticaRESUMEN
Water-borne plant pathogenic fungi and oomycetes are a major threat in greenhouse production systems. Early detection and quantification of these pathogens would enable us to ascertain both economic and biological thresholds required for a timely treatment, thus improving effective disease management. Here, we used Oxford nanopore MinION amplicon sequencing to analyze microbial communities in irrigation water collected from greenhouses used for growing tomato, cucumber and Aeschynanthus sp. Fungal and oomycete communities were characterized using primers that amplify the full internal transcribed spacer (ITS) region. To assess the sensitivity of the MinION sequencing, we spiked serially diluted mock DNA into the DNA isolated from greenhouse water samples prior to library preparation. Relative abundances of fungal and oomycete reads were distinct in the greenhouse irrigation water samples and in water samples from setups with tomato that was inoculated with Fusarium oxysporum. Sequence reads derived from fungal and oomycete mock communities were proportionate in the respective serial dilution samples, thus confirming the suitability of MinION amplicon sequencing for environmental monitoring. By using spike-ins as standards to test the reliability of quantification using the MinION, we found that the detection of spike-ins was highly affected by the background quantities of fungal or oomycete DNA in the sample. We observed that spike-ins having shorter length (538bp) produced reads across most of our dilutions compared to the longer spikes (>790bp). Moreover, the sequence reads were uneven with respect to dilution series and were least retrievable in the background samples having the highest DNA concentration, suggesting a narrow dynamic range of performance. We suggest continuous benchmarking of the MinION sequencing to improve quantitative metabarcoding efforts for rapid plant disease diagnostic and monitoring in the future.
Asunto(s)
Nanoporos , Oomicetos , Reproducibilidad de los Resultados , Oomicetos/genética , Hongos/genética , Análisis de Secuencia de ADN , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Oomycetes are fungus-like heterotrophic organisms with a broad environmental distribution, including marine, freshwater, and terrestrial habitats. They function as saprotrophs that use the remains of other organisms or as parasites of a variety of eukaryotes, including protists, diatoms, dinoflagellates, macroalgae, plants, fungi, animals, and even other oomycetes. Among the protist hosts, the taxonomy, morphology, and phylogenetic positions of the oomycete parasitoids of diatoms have been well studied; however, this information concerning the oomycete parasitoids of dinoflagellates is poorly understood. During intensive sampling along the east and west coasts of Korea in May and October 2019, a new species of oomycetes was discovered and two strains of the new parasitoid were successfully established in cultures. The new oomycete parasitoid penetrated the dinoflagellate host cell and developed to form a sporangium, which was very similar to the perkinsozoan parasitoids that infect marine dinoflagellates. The most distinctive morphological feature of the new parasitoid was a central large vacuole forming several long discharge tubes. The molecular phylogenetic tree inferred based on the small subunit (SSU) ribosomal DNA (rDNA) revealed that the new parasitoid forms a distinct branch unrelated to other described species belonging to early-diverging oomycetes. It clustered with species belonging to the genus Sirolpidium with strong support values in the cytochrome c oxidase subunit 2 (cox2) tree. Cross-infection experiments showed that infections by the new parasitoid occurred in only six genera belonging to dinoflagellates among the protists tested in this study. Based on the morphological and molecular data obtained in this study, we propose to introduce a new species, Sirolpidium dinoletiferum sp. nov., for this novel parasitoid, conservatively within the genus Sirolpidium.
Asunto(s)
Dinoflagelados , Oomicetos , Animales , Dinoflagelados/genética , Filogenia , ADN Ribosómico/genética , Especificidad del Huésped , Oomicetos/genéticaRESUMEN
Pseudoperonospora cubensis, the causal agent of Cucurbit downy mildew (CDM), is one of the most important diseases affecting cucurbit production in the United States. This disease is especially damaging to Florida production areas, as the state is a top producer of many cucurbit species. In addition, winter production in central and south Florida likely serves as a likely source of P. cubensis inoculum for spring and summer cucurbit production throughout the eastern United States, where CDM is unable to overwinter in the absence of a living host. Over 2 years (2017 and 2018) and four seasons (spring 2017, spring 2018, fall 2017, and fall 2018), 274 P. cubensis isolates were collected from cucurbit hosts at production sites in south, central, and north Florida. The isolates were analyzed with 10 simple sequence repeat (SSR) markers to establish population structure and genetic diversity and further assigned to a clade based on a qPCR assay. Results of population structure and genetic diversity analyses differentiated isolates based on cucurbit host and clade (1 or 2). Of the isolates assigned to clade by qPCR, butternut squash, watermelon, and zucchini were dominated by clade 1 isolates, whereas cucumber isolates were split 34 and 59% between clades 1 and 2, respectively. Clade assignments agreed with isolate clustering observed within discriminant analysis of principal components (DAPC) based on SSR markers, although watermelon isolates formed a group distinct from the other clade 1 isolates. For seasonal collections from cucumber at each location, isolates were typically skewed to one clade or the other and varied across locations and seasons within each year of the study. This variable population structure of cucumber isolates could have consequences for regional disease management. This is the first study to characterize P. cubensis populations in Florida and evaluate the effect of cucurbit host and clade-type on isolate diversity and population structure, with implications for CDM management in Florida and other United States cucurbit production areas.
Asunto(s)
Cucumis sativus , Cucurbitaceae , Oomicetos , Peronospora , Estados Unidos , Estaciones del Año , Florida , Enfermedades de las Plantas , Oomicetos/genéticaRESUMEN
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Asunto(s)
Oomicetos , Peronospora , Vitis , Vitis/metabolismo , Enfermedades de las Plantas/genética , Oomicetos/genética , Manejo de la EnfermedadRESUMEN
Many oomycete species are associated with the seedlings of crops, including upland cotton (Gossypium hirsutum L.), which leads to annual threats. The diversity of oomycete species in Alabama needs to be better understood since the last survey of oomycetes associated with cotton in Alabama was 20 years ago-before significant updates to taxonomy and improvements in identification of oomycetes using molecular tools. Our current study aimed to identify oomycetes associated with Alabama cotton seedlings, correlate diversity with soil edaphic factors, and assess virulence toward cotton seed. Thirty symptomatic cotton seedlings were collected independently from 25 fields in 2021 and 2022 2 to 4 weeks after planting. Oomycetes were isolated by plating root sections onto a semiselective medium. The internal transcribed spacer (ITS) region was sequenced to identify the resulting isolates. A seed virulence assay was conducted in vitro to verify pathogenicity, and 347 oomycete isolates were obtained representing 36 species. Northern Alabama soils had the richest oomycete communities and a greater silt and clay concentration than sandier soils in the central and southern coastal plains. Globisporangium irregulare and Phytophthora nicotianae were consistently recovered from cotton roots in both years. Globisporangium irregulare was pathogenic and recovered from all Alabama regions, whereas P. nicotianae was pathogenic but recovered primarily in areas with lower sand content in northern Alabama. Many oomycete species have not been previously reported in Alabama or the southeastern United States. Altogether, this knowledge will help facilitate effective management strategies for cotton seedling diseases caused by oomycetes in Alabama and the United States.
Asunto(s)
Gossypium , Oomicetos , Enfermedades de las Plantas , Plantones , Gossypium/microbiología , Alabama , Plantones/microbiología , Oomicetos/genética , Oomicetos/clasificación , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Suelo , Biodiversidad , Virulencia , Raíces de Plantas/microbiologíaRESUMEN
Melon (Cucumis melo L.) represents an agriculturally significant horticultural crop that is widely grown for its flavorful fruits. Downy mildew (DM), a pervasive foliar disease, poses a significant threat to global melon production. Although several quantitative trait loci related to DM resistance have been identified, the comprehensive genetic underpinnings of this resistance remain largely uncharted. In this study, we utilized integrative transcriptomics and metabolomics approaches to identify potential resistance-associated genes and delineate the strategies involved in the defense against DM in two melon cultivars: the resistant 'PI442177' ('K10-1') and the susceptible 'Huangdanzi' ('K10-9'), post-P. cubensis infection. Even in the absence of the pathogen, there were distinctive differentially expressed genes (DEGs) between 'K10-1' and 'K10-9'. When P. cubensis was infected, certain genes, including flavin-containing monooxygenase (FMO), receptor-like protein kinase FERONIA (FER), and the HD-ZIP transcription factor member, AtHB7, displayed pronounced expression differences between the cultivars. Notably, our data suggest that following P. cubensis infection, both cultivars suppressed flavonoid biosynthesis via the down-regulation of associated genes whilst concurrently promoting lignin production. The complex interplay of transcriptomic and metabolic responses elucidated by this study provides foundational insights into melon's defense mechanisms against DM. The robust resilience of 'K10-1' to DM is attributed to the synergistic interaction of its inherent transcriptomic and metabolic reactions.
Asunto(s)
Cucurbitaceae , Oomicetos , Peronospora , Cucurbitaceae/genética , Oomicetos/genética , Perfilación de la Expresión Génica , Mecanismos de Defensa , Enfermedades de las Plantas/genéticaRESUMEN
Downy mildew caused by the obligate parasite Hyaloperonospora brassicae is a devastating disease for Brassica species. Infection of Hyaloperonospora brassicae often leads to yellow spots on leaves, which significantly impacts quality and yield of pakchoi. In the present study, we conducted a comparative transcriptome between the resistant and susceptible pakchoi cultivars in response to Hyaloperonospora brassicae infection. A total of 1073 disease-resistance-related differentially expressed genes were identified using a Venn diagram. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these genes were mainly involved in plant-pathogen interaction, plant hormone signal transduction, and other photosynthesis-related metabolic processes. Analysis of the phytohormone content revealed that salicylic acid increased significantly in the resistant material after inoculation with Hyaloperonospora brassicae, whereas the contents of jasmonic acid, abscisic acid, and 1-aminocyclopropane-1-carboxylic acid decreased. Exogenous salicylic acid treatment also significantly upregulated Hyaloperonospora brassicae-induced genes, which further confirmed a crucial role of salicylic acid during pakchoi defense against Hyaloperonospora brassicae. Based on these findings, we suggest that the salicylic-acid-mediated signal transduction contributes to the resistance of pakchoi to downy mildew, and PAL1, ICS1, NPR1, PR1, PR5, WRKY70, WRKY33, CML43, CNGC9, and CDPK15 were involved in this responsive process. Our findings evidently contribute to revealing the molecular mechanism of pakchoi defense against Hyaloperonospora brassicae.
Asunto(s)
Oomicetos , Peronospora , Humanos , Transcriptoma , Enfermedades de las Plantas/genética , Oomicetos/genética , Perfilación de la Expresión Génica , Resistencia a la Enfermedad/genética , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Susceptibilidad a EnfermedadesRESUMEN
Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic downy mildew that is routinely cultured on Arabidopsis thaliana hosts that harbour complex microbiomes. We hypothesized that the culturing procedure proliferates Hpa-associated microbiota (HAM) in addition to the pathogen and exploited this model system to investigate which microorganisms consistently associate with Hpa. Using amplicon sequencing, we found nine bacterial sequence variants that are shared between at least three out of four Hpa cultures in the Netherlands and Germany and comprise 34% of the phyllosphere community of the infected plants. Whole-genome sequencing showed that representative HAM bacterial isolates from these distinct Hpa cultures are isogenic and that an additional seven published Hpa metagenomes contain numerous sequences of the HAM. Although we showed that HAM benefit from Hpa infection, HAM negatively affect Hpa spore formation. Moreover, we show that pathogen-infected plants can selectively recruit HAM to both their roots and shoots and form a soil-borne infection-associated microbiome that helps resist the pathogen. Understanding the mechanisms by which infection-associated microbiomes are formed might enable breeding of crop varieties that select for protective microbiomes.