Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(5): 168319, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865286

RESUMEN

Animal opsin is a G-protein coupled receptor (GPCR) and binds retinal as a chromophore to form a photopigment. The Opsin 5 (Opn5) group within the animal opsin family comprises a diverse array of related proteins, such as Opn5m, a protein conserved across all vertebrate lineages including mammals, and other members like Opn5L1 and Opn5L2 found in non-mammalian vertebrate genomes, and Opn6 found in non-therian vertebrate genomes, along with Opn5 homologs present in invertebrates. Although these proteins collectively constitute a single clade within the molecular phylogenetic tree of animal opsins, they exhibit markedly distinct molecular characteristics in areas such as retinal binding properties, photoreaction, and G-protein coupling specificity. Based on their molecular features, they are believed to play a significant role in physiological functions. However, our understanding of their precise physiological functions and molecular characteristics is still developing and only partially realized. Furthermore, their unique molecular characteristics of Opn5-related proteins suggest a high potential for their use as optogenetic tools through more specialized manipulations. This review intends to encapsulate our current understanding of Opn5, discuss potential manipulations of its molecular attributes, and delve into its prospective utility in the burgeoning field of animal opsin optogenetics.


Asunto(s)
Opsinas , Optogenética , Receptores Acoplados a Proteínas G , Animales , Opsinas/química , Opsinas/clasificación , Opsinas/genética , Filogenia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/genética , Secuencia Conservada
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33941643

RESUMEN

The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.


Asunto(s)
Encéfalo/metabolismo , Ojo/metabolismo , Proteínas del Helminto/genética , Opsinas/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Planarias/genética , Animales , Nivel de Alerta/genética , Nivel de Alerta/fisiología , Nivel de Alerta/efectos de la radiación , Encéfalo/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/clasificación , Proteínas del Helminto/metabolismo , Hibridación Fluorescente in Situ/métodos , Locomoción/genética , Locomoción/fisiología , Locomoción/efectos de la radiación , Movimiento/fisiología , Movimiento/efectos de la radiación , Opsinas/clasificación , Opsinas/metabolismo , Filogenia , Planarias/crecimiento & desarrollo , Planarias/metabolismo , Interferencia de ARN , Rayos Ultravioleta
3.
PLoS One ; 15(4): e0231085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32320418

RESUMEN

Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.


Asunto(s)
Evolución Molecular , Proteínas de Transporte de Membrana/genética , Opsinas/genética , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos/genética , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Biología Computacional , Humanos , Proteínas de Transporte de Membrana/clasificación , Opsinas/clasificación , Filogenia , Receptores Acoplados a Proteínas G/clasificación , Receptores de Péptidos/genética
4.
Genome Biol Evol ; 12(2): 3906-3916, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031627

RESUMEN

Our ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct. Opsin phylogeny illustrates this problem clearly. Opsins are G-protein coupled receptors utilized in photoreceptive processes across Metazoa and their protein sequences are roughly 300 amino acids long. A number of incongruent opsin phylogenies have been published and opsin evolution remains poorly understood. Here, we present a novel approach, the canary sequence approach, to investigate and potentially circumvent errors in single-gene phylogenies. First, we demonstrate our approach using two well-understood cases of long-branch attraction in single-gene data sets, and simulations. After that, we apply our approach to a large collection of well-characterized opsins to clarify the relationships of the three main opsin subfamilies.


Asunto(s)
Opsinas/genética , Animales , Evolución Molecular , Opsinas/clasificación , Filogenia , ARN Ribosómico 18S/genética
5.
Elife ; 82019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31635694

RESUMEN

Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane.


Asunto(s)
Péptidos/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Platelmintos/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Encéfalo , Membrana Celular/metabolismo , Evolución Molecular , Ojo/citología , Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP , Humanos , Larva , Fototransducción/fisiología , Opsinas/clasificación , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras/citología , Células Fotorreceptoras/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Filogenia , Células Fotorreceptoras Retinianas Bastones/citología , Alineación de Secuencia , Análisis de Secuencia de Proteína
6.
Gigascience ; 7(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445460

RESUMEN

Background: Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results: Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions: Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.


Asunto(s)
Alérgenos/genética , Transferencia de Gen Horizontal/genética , Genoma , Ácaros/genética , Metabolismo Secundario/genética , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Alérgenos/inmunología , Animales , Proteínas de Artrópodos/análisis , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Bacterias/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Hongos/genética , Larva/genética , Ácaros/clasificación , Ácaros/crecimiento & desarrollo , Opsinas/clasificación , Opsinas/genética , Filogenia , Proteínas y Péptidos Salivales/clasificación , Proteínas y Péptidos Salivales/genética , Espectrometría de Masas en Tándem , Trombiculidae/clasificación , Trombiculidae/genética
7.
PLoS One ; 13(10): e0205015, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30273391

RESUMEN

Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice-as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop-important to confer specificity of interaction between 7TMDRs and G-proteins-with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways.


Asunto(s)
Luz , Opsinas/metabolismo , Transducción de Señal/efectos de la radiación , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Carbacol/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Potenciales de la Membrana , Opsinas/clasificación , Opsinas/genética , Técnicas de Placa-Clamp , Pectinidae/metabolismo , Filogenia , Dominios Proteicos , Retina/metabolismo , Retina/patología , Alineación de Secuencia , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo
8.
Sci Adv ; 3(11): eaao4709, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134201

RESUMEN

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.


Asunto(s)
Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Animales , Arrestina/clasificación , Arrestina/genética , Evolución Biológica , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Peces , Opsinas/clasificación , Opsinas/genética , Filogenia , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transcriptoma , Transducina/clasificación , Transducina/genética
9.
Sci Rep ; 7(1): 15568, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138475

RESUMEN

We studied the evolution of opsin genes in 59 ray-finned fish genomes. We identified the opsin genes and adjacent genes (syntenies) in each genome. Then we inferred the changes in gene copy number (N), syntenies, and tuning sites along each phylogenetic branch during evolution. The Exorh (rod opsin) gene has been retained in 56 genomes. Rh1, the intronless rod opsin gene, first emerged in ancestral Actinopterygii, and N increased to 2 by the teleost-specific whole genome duplication, but then decreased to 1 in the ancestor of Neoteleostei fishes. For cone opsin genes, the rhodopsin-like (Rh2) and long-wave-sensitive (LWS) genes showed great variation in N among species, ranging from 0 to 5 and from 0 to 4, respectively. The two short-wave-sensitive genes, SWS1 and SWS2, were lost in 23 and 6 species, respectively. The syntenies involving LWS, SWS2 and Rh2 underwent complex changes, while the evolution of the other opsin gene syntenies was much simpler. Evolutionary adaptation in tuning sites under different living environments was discussed. Our study provides a detailed view of opsin gene gains and losses, synteny changes and tuning site changes during ray-finned fish evolution.


Asunto(s)
Evolución Molecular , Peces/genética , Opsinas/genética , Opsinas de Bastones/genética , Animales , Genoma/genética , Metagenómica , Opsinas/clasificación , Filogenia , Opsinas de Bastones/clasificación , Sintenía/genética
10.
Science ; 357(6356)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912215

RESUMEN

Channelrhodopsins are light-gated ion channels that, via regulation of flagellar function, enable single-celled motile algae to seek ambient light conditions suitable for photosynthesis and survival. These plant behavioral responses were initially investigated more than 150 years ago. Recently, major principles of function for light-gated ion channels have been elucidated by creating channelrhodopsins with kinetics that are accelerated or slowed over orders of magnitude, by discovering and designing channelrhodopsins with altered spectral properties, by solving the high-resolution channelrhodopsin crystal structure, and by structural model-guided redesign of channelrhodopsins for altered ion selectivity. Each of these discoveries not only revealed basic principles governing the operation of light-gated ion channels, but also enabled the creation of new proteins for illuminating, via optogenetics, the fundamentals of brain function.


Asunto(s)
Channelrhodopsins/química , Channelrhodopsins/fisiología , Animales , Channelrhodopsins/ultraestructura , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Cristalografía , Neuronas Dopaminérgicas/fisiología , Luz , Mesencéfalo/citología , Mesencéfalo/fisiología , Opsinas/química , Opsinas/clasificación , Optogenética , Ratas
11.
Mol Phylogenet Evol ; 115: 40-49, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28739369

RESUMEN

Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.


Asunto(s)
Genoma , Queratinas/genética , Opsinas/genética , Receptores Acoplados a Proteínas G/genética , Serpientes/clasificación , Animales , Evolución Biológica , Evolución Molecular , Pezuñas y Garras/metabolismo , Queratinas/clasificación , Queratinas/metabolismo , Opsinas/clasificación , Filogenia , Receptores Acoplados a Proteínas G/clasificación , Serpientes/genética
12.
Int J Dev Biol ; 61(10-11-12): 763-772, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29319122

RESUMEN

Light detection in animals is predominantly based on the photopigment composed of a protein moiety, the opsin, and the chromophore retinal. Animal opsins originated very early in metazoan evolution from within the G-Protein Coupled Receptor (GPCR) gene superfamily and diversified into several distinct branches prior to the cnidarian-bilaterian split. The origin of opsin diversity, opsin classification and interfamily relationships have been the matter of long-standing debate. Comparative studies of opsins from various Metazoa provide key insight into the evolutionary history of opsins and the visual perception in animals. Here, we have analyzed the genome assembly of the cephalochordate Branchiostoma lanceolatum, applying BLAST, gene prediction tools and manual curation in order to predict de novo its complete opsin repertoire. We investigated the structure of predicted opsin genes, encoded proteins, their phylogenetic placement, and expression. We identified a total of 22 opsin genes in B. lanceolatum, of which 21 are expressed and the remaining one appears to be a pseudogene. According to our phylogenetic analysis, representatives from the three major opsin groups, namely C-type, the R-type and the Group 4, can be identified in B. lanceolatum. Most of the B. lanceolatum opsins exhibit a stage-specific, but not a tissue-specific, expression pattern. The large number of opsins detected in B. lanceolatum, the observed similarities and differences in terms of sequence characteristics and expression patterns lead us to conclude that there may be a fine tuning in opsin utilization in order to facilitate visually-guided behavior of European amphioxus under various environmental settings.


Asunto(s)
Genómica/métodos , Anfioxos/genética , Familia de Multigenes , Opsinas/genética , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Opsinas/clasificación , Células Fotorreceptoras/metabolismo , Filogenia
13.
Genome Biol Evol ; 8(5): 1571-89, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27189985

RESUMEN

Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.


Asunto(s)
Evolución Molecular , Cangrejos Herradura/genética , Opsinas/genética , Filogenia , Secuencia de Aminoácidos , Animales , Ojo/metabolismo , Genoma , Familia de Multigenes/genética , Opsinas/clasificación
14.
J Biol Chem ; 290(36): 21951-61, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195627

RESUMEN

The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residue at this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.


Asunto(s)
Ácido Aspártico/genética , Proteínas de Drosophila/genética , Ácido Glutámico/genética , Mutación , Rodopsina/genética , Animales , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Western Blotting , Secuencia Conservada/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Microespectrofotometría , Opsinas/clasificación , Opsinas/genética , Opsinas/metabolismo , Filogenia , Estructura Secundaria de Proteína , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Rodopsina/química , Rodopsina/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-25319538

RESUMEN

A nocturnal bottleneck during mammalian evolution left a majority of species with two cone opsins, or dichromatic color vision. Primate trichromatic vision arose from the duplication and divergence of an X-linked opsin gene, and is long attributed to tandem shifts from nocturnality to diurnality and from insectivory to frugivory. Opsin gene variation and at least one duplication event exist in the order Chiroptera, suggesting that trichromatic vision could evolve under favorable ecological conditions. The natural history of the Samoan flying fox (Pteropus samoensis) meets these conditions--it is a large bat that consumes nectar and fruit and demonstrates strong diurnal proclivities. It also possesses a visual system that is strikingly similar to that of primates. To explore the potential for opsin gene duplication and divergence in this species, we sequenced the opsin genes of 11 individuals (19 X-chromosomes) from three South Pacific islands. Our results indicate the uniform presence of two opsins with predicted peak sensitivities of ca. 360 and 553 nm. This result fails to support a causal link between diurnal frugivory and trichromatic vision, although it remains plausible that the diurnal activities of P. samoensis have insufficient antiquity to favor opsin gene renovation.


Asunto(s)
Quirópteros/fisiología , Ritmo Circadiano/fisiología , Visión de Colores/genética , Evolución Molecular , Opsinas/genética , Animales , Visión de Colores/fisiología , Femenino , Masculino , Opsinas/clasificación , Opsinas/metabolismo , Filogenia , Análisis de Secuencia de ADN
16.
Artículo en Inglés | MEDLINE | ID: mdl-24615327

RESUMEN

In a previous study of the phototaxis of green rice leafhoppers, Nephotettix cincticeps (Hemiptera, Cicadellidae), we found positive responses to 735 nm light. Here, we investigated the mechanism underlying this sensitivity to near-infrared light. We first measured the action spectrum using a Y-maze with monochromatic lights from 480 to 740 nm. We thus found that the action spectrum peaks at 520 nm in the tested wavelength range, but that a significant effect is still observed at 740 nm, albeit with a sensitivity 5 log units lower than the peak. Second, we measured the spectral sensitivity of the eye, and found that the sensitivity in the long-wavelength region parallels the behaviorally determined action spectrum. We further identified mRNAs encoding opsins of ultraviolet, blue, and green-absorbing visual pigments, and localized the mRNAs in the ommatidia by in situ hybridization. The electrophysiology, molecular biology and the anatomy of the eye together indicate that the eyes of N. cincticeps do not contain true "red" receptors, but rather that the behavioral response to near-infrared light is mediated by the tail sensitivity of the green receptors in the long-wavelength region of the spectrum.


Asunto(s)
Mariposas Diurnas/fisiología , Percepción de Color/fisiología , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Color , Percepción de Color/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Opsinas/clasificación , Opsinas/genética , Estimulación Luminosa/métodos , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , ARN Mensajero , Rayos Ultravioleta
17.
Biochim Biophys Acta ; 1837(5): 710-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24041647

RESUMEN

Most animal opsin-based pigments are typical G protein-coupled receptors (GPCR) and consist of a protein moiety, opsin, and 11-cis retinal as a chromophore. More than several thousand opsins have been identified from a wide variety of animals, which have multiple opsin genes. Accumulated evidence reveals the molecular property of opsin-based pigments, particularly non-conventional visual pigments including non-visual pigments. Opsin-based pigments are generally a bistable pigment having two stable and photointerconvertible states and therefore are bleach-resistant and reusable, unlike vertebrate visual pigments which become bleached. The opsin family contains Gt-coupled, Gq-coupled, Go-coupled, Gs-coupled, Gi-coupled, and Gi/Go-coupled opsins, indicating the existence of a large diversity of light-driven GPCR-signaling cascades. It is suggested that these molecular properties might contribute to different physiologies. In addition, various opsin based-pigments, especially nonconventional visual pigments having different molecular characteristics would facilitate the design and development of promising optogenetic tools for modulating GPCR-signaling, which is involved in a wide variety of physiological responses. We here introduce molecular and functional properties of various kinds of opsins and discuss their physiological function and also their potentials for optogenetic applications. This article is part of a Special Issue entitled: Retinal proteins - you can teach an old dog new tricks.


Asunto(s)
Fototransducción , Opsinas/química , Opsinas/clasificación , Filogenia , Retinaldehído/química , Animales , Humanos , Invertebrados/química , Invertebrados/fisiología , Luz , Opsinas/metabolismo , Optogenética/métodos , Optogenética/tendencias , Estabilidad Proteica , Retinaldehído/metabolismo , Relación Estructura-Actividad , Vertebrados/fisiología , Visión Ocular/fisiología
18.
Biochim Biophys Acta ; 1837(5): 664-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24021171

RESUMEN

Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis-trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Asunto(s)
Modelos Moleculares , Opsinas/química , Filogenia , Células Fotorreceptoras Retinianas Conos/química , Retinaldehído/química , Animales , Visión de Colores/fisiología , Evolución Molecular , Humanos , Conformación Molecular , Opsinas/clasificación , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/ultraestructura , Retinaldehído/metabolismo , Rodopsina/química , Rodopsina/metabolismo
19.
Neuron ; 80(5): 1206-17, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24314730

RESUMEN

For efficient coding, sensory systems need to adapt to the distribution of signals to which they are exposed. In vision, natural scenes above and below the horizon differ in the distribution of chromatic and achromatic features. Consequently, many species differentially sample light in the sky and on the ground using an asymmetric retinal arrangement of short- (S, "blue") and medium- (M, "green") wavelength-sensitive photoreceptor types. Here, we show that in mice this photoreceptor arrangement provides for near-optimal sampling of natural achromatic contrasts. Two-photon population imaging of light-driven calcium signals in the synaptic terminals of cone-photoreceptors expressing a calcium biosensor revealed that S, but not M cones, preferred dark over bright stimuli, in agreement with the predominance of dark contrasts in the sky but not on the ground. Therefore, the different cone types do not only form the basis of "color vision," but in addition represent distinct (achromatic) contrast-selective channels.


Asunto(s)
Percepción de Color/fisiología , Color , Sensibilidad de Contraste/fisiología , Oscuridad , Retina/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Sensoras del Calcio Intracelular/genética , Ratones , Ratones Transgénicos , Opsinas/clasificación , Opsinas/genética , Estimulación Luminosa , Células Fotorreceptoras Retinianas Conos/clasificación , Visión Ocular/genética
20.
PLoS One ; 8(10): e78140, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205129

RESUMEN

Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.


Asunto(s)
Evolución Molecular , Mariposas Nocturnas/genética , Opsinas/genética , Animales , Mariposas Nocturnas/clasificación , Opsinas/clasificación , Filogenia , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA