Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 364(6440): 588-592, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31073066

RESUMEN

Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.


Asunto(s)
Evolución Molecular , Proteínas de Peces/fisiología , Peces/fisiología , Opsinas de Bastones/fisiología , Visión Ocular/fisiología , Animales , Oscuridad , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Peces/genética , Variación Genética , Genoma , Filogenia , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Visión Ocular/genética
2.
Sci Rep ; 7(1): 15568, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138475

RESUMEN

We studied the evolution of opsin genes in 59 ray-finned fish genomes. We identified the opsin genes and adjacent genes (syntenies) in each genome. Then we inferred the changes in gene copy number (N), syntenies, and tuning sites along each phylogenetic branch during evolution. The Exorh (rod opsin) gene has been retained in 56 genomes. Rh1, the intronless rod opsin gene, first emerged in ancestral Actinopterygii, and N increased to 2 by the teleost-specific whole genome duplication, but then decreased to 1 in the ancestor of Neoteleostei fishes. For cone opsin genes, the rhodopsin-like (Rh2) and long-wave-sensitive (LWS) genes showed great variation in N among species, ranging from 0 to 5 and from 0 to 4, respectively. The two short-wave-sensitive genes, SWS1 and SWS2, were lost in 23 and 6 species, respectively. The syntenies involving LWS, SWS2 and Rh2 underwent complex changes, while the evolution of the other opsin gene syntenies was much simpler. Evolutionary adaptation in tuning sites under different living environments was discussed. Our study provides a detailed view of opsin gene gains and losses, synteny changes and tuning site changes during ray-finned fish evolution.


Asunto(s)
Evolución Molecular , Peces/genética , Opsinas/genética , Opsinas de Bastones/genética , Animales , Genoma/genética , Metagenómica , Opsinas/clasificación , Filogenia , Opsinas de Bastones/clasificación , Sintenía/genética
3.
PLoS One ; 7(9): e45387, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049792

RESUMEN

The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Ganglionares de la Retina/enzimología , Opsinas de Bastones/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HEK293 , Humanos , Luz , Fototransducción/efectos de los fármacos , Fototransducción/efectos de la radiación , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosforilación , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Transfección
4.
PLoS One ; 6(9): e25111, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966429

RESUMEN

Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.


Asunto(s)
Fotoperiodo , Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación de la Expresión Génica , Larva/genética , Larva/metabolismo , Filogenia , Glándula Pineal/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Pez Cebra/genética , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética
5.
PLoS One ; 5(11): e15015, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21124838

RESUMEN

The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ(max) = 453 nm) and violet receptors (λ(max) = 425 nm), respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.


Asunto(s)
Mariposas Diurnas/metabolismo , Evolución Molecular , Pigmentos Retinianos/metabolismo , Opsinas de Bastones/metabolismo , Secuencia de Aminoácidos , Animales , Mariposas Diurnas/genética , Electroforesis en Gel de Poliacrilamida , Femenino , Células HEK293 , Humanos , Immunoblotting , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Filogenia , Estructura Secundaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Pigmentos Retinianos/química , Pigmentos Retinianos/genética , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Homología de Secuencia de Aminoácido , Espectrofotometría/métodos
6.
J Neurosci ; 29(23): 7519-25, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19515920

RESUMEN

The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further.


Asunto(s)
Boidae/metabolismo , Opsinas de los Conos/química , Opsinas de los Conos/genética , Retina/química , Opsinas de Bastones/química , Opsinas de Bastones/genética , Serpientes/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Biológica , Boidae/anatomía & histología , Boidae/genética , Línea Celular , Opsinas de los Conos/clasificación , Opsinas de los Conos/metabolismo , Humanos , Datos de Secuencia Molecular , Estimulación Luminosa , Filogenia , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/anatomía & histología , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Opsinas de Bastones/clasificación , Opsinas de Bastones/metabolismo , Homología de Secuencia de Aminoácido , Serpientes/anatomía & histología , Serpientes/genética , Espectrofotometría
7.
Gene ; 436(1-2): 66-70, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19232386

RESUMEN

Sexual communication between male and female fireflies involves the visual detection of bioluminescence. In the present study, we isolated two different types of opsin cDNAs from an adult of the Japanese firefly, Luciola cruciata. Phylogenetic analysis indicated that these genes correspond to long wavelength-sensitive and ultraviolet-sensitive opsins. This is in agreement with the prior findings, in which the spectral sensitivity of the L. cruciata eye showed two peaks, UV and long wavelength, and the latter substantially matched the bioluminescent spectrum of lambdamax=560 nm. Diel changes in both opsins mRNA levels were determined by quantitative PCR analysis. In adult females, the mRNA level of long wavelength-sensitive opsin was higher at night than in the day, and peaked at 20:00, the time when the luminescence behavior was most active. On the other hand, the expression level of ultraviolet-sensitive opsin was not significantly changed during the day. In adult males, diel changes in the expression of both opsins were not significant. The results suggest that the expression level of "bioluminescence-sensitive" opsins in female L. cruciata is linked to their mating behavior.


Asunto(s)
Luciérnagas/genética , Perfilación de la Expresión Génica , Opsinas/genética , Opsinas de Bastones/genética , Animales , Ritmo Circadiano , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Proteínas de Insectos/genética , Masculino , Datos de Secuencia Molecular , Opsinas/clasificación , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Opsinas de Bastones/clasificación , Análisis de Secuencia de ADN , Rayos Ultravioleta
8.
J Mol Evol ; 66(2): 130-7, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18217181

RESUMEN

Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called "color vision". For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision.


Asunto(s)
Percepción de Color/genética , Evolución Molecular , Opsinas de Bastones/genética , Arañas/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Datos de Secuencia Molecular , Filogenia , Opsinas de Bastones/química , Opsinas de Bastones/clasificación , Opsinas de Bastones/efectos de la radiación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Arañas/clasificación , Rayos Ultravioleta
9.
Cell Mol Life Sci ; 64(22): 2917-32, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17726575

RESUMEN

The vertebrate retina contains several classes of visual pigments responsible for such diverse functions as image- and nonimage-forming vision, the entrainment of circadian cycles, and the pupilary light response. With vision being vital to the survival of many species, the elucidation of the structural and biochemical properties of visual pigments has been the focus of a large body of research that has led to rapid advances in the field of photoreception. In this review, the current understanding of the structure, function, biochemistry, and evolution of the opsins that make up the photopigments in the vertebrate retina will be reviewed. These include the rod and cone opsins, melanopsin, RGR, peropsin, and VA-opsin. The goal is to highlight important questions that have been answered and to define some of the remaining questions in the field that will provide future directions for research.


Asunto(s)
Evolución Molecular , Retina/química , Opsinas de Bastones/química , Opsinas de Bastones/genética , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fotobiología , Filogenia , Conformación Proteica , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Bastones/química , Opsinas de Bastones/clasificación , Opsinas de Bastones/fisiología
10.
Gene ; 399(1): 26-32, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17590287

RESUMEN

At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.


Asunto(s)
Lagartos/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/clasificación , Opsinas de Bastones/química , Opsinas de Bastones/clasificación , Sustitución de Aminoácidos , Animales , Evolución Molecular , Lagartos/genética , Datos de Secuencia Molecular , Filogenia , Pigmentación , Pigmentos Biológicos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Opsinas de Bastones/genética , Análisis Espectral
11.
Genome Res ; 16(11): 1431-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17065614

RESUMEN

The recently sequenced genome of the honey bee (Apis mellifera) has produced 10,157 predicted protein sequences, calling for a computational effort to extract biological insights from them. We have applied an unsupervised hierarchical protein-clustering method, which was previously used in the ProtoNet system, to nearly 200,000 proteins consisting of the predicted honey bee proteins, the SWISS-PROT protein database, and the complete set of proteins of the mouse (Mus musculus) and the fruit fly (Drosophila melanogaster). The hierarchy produced by this method has been entitled ProtoBee. In ProtoBee, the proteins are hierarchically organized into 18,936 separate tree hierarchies, each representing a protein functional family. By using the mouse and Drosophila complete proteomes as reference, we are able to highlight functional groups of putative gene-loss events, putative novel proteins of unique functionality, and bee-specific paralogs. We have studied some of the ProtoBee findings and suggest their biological relevance. Examples include novel opsin genes and intriguing nuclear matches of mitochondrial genes. The organization of bee sequences into functional clusters suggests a natural way of automatically inferring functional annotation. Following this notion, we were able to assign functional annotation to about 70% of the sequences. ProtoBee is available at http://www.protobee.cs.huji.ac.il.


Asunto(s)
Abejas/genética , Bases de Datos de Proteínas , Proteoma , Animales , Drosophila melanogaster/genética , Genoma de los Insectos , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Ratones , Proteoma/clasificación , Proteoma/genética , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética
12.
Biosystems ; 86(1-3): 3-17, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16843587

RESUMEN

Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.


Asunto(s)
Invertebrados/metabolismo , Filogenia , Pigmentos Retinianos/metabolismo , Opsinas de Bastones/metabolismo , Animales , Ojo , Humanos , Invertebrados/clasificación , Fototransducción , Opsinas de Bastones/química , Opsinas de Bastones/clasificación , Sensibilidad y Especificidad
14.
J Mol Evol ; 61(1): 75-89, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15988624

RESUMEN

The visual receptor of rods and cones is a covalent complex of the apoprotein, opsin, and the light-sensitive chromophore, 11-cis-retinal. This pigment must fulfill many functions including photoactivation, spectral tuning, signal transmission, inactivation, and chromophore regeneration. Rod and cone photoreceptors employ distinct families of opsins. Although it is well known that these opsin families provide unique ranges in spectral sensitivity, it is unclear whether the families have additional functional differences. In this study, we use evolutionary trace (ET) analysis of 188 vertebrate opsin sequences to identify functionally important sites in each opsin family. We demonstrate the following results. (1) The available vertebrate opsin sequences produce a definitive description of all five vertebrate opsin families. This is the first demonstration of sequence saturation prior to ET analysis, which we term saturated ET (SET). (2) The cone opsin classes have class-specific sites compared to the rod opsin class. These sites reside in the transmembrane region and tune the spectral sensitivity of each opsin class to its characteristic wavelength range. (3) The cytoplasmic loops, primarily responsible for signal transmission and inactivation, are essentially invariant in rod versus cone opsins. This indicates that the electrophysiological differences between rod and cone photoreceptors cannot be ascribed to differences in the protein interaction regions of the opsins. SET shows that chromophore binding and regeneration are the only aspects of opsin structure likely to have functionally significant differences between rods and cones, whereas excitatory and adaptational properties of the opsin families appear to be functionally invariant.


Asunto(s)
Percepción de Color/genética , Evolución Molecular , Opsinas de Bastones/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Percepción de Color/fisiología , Bases de Datos de Ácidos Nucleicos , Funciones de Verosimilitud , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Filogenia , Células Fotorreceptoras Retinianas Conos/fisiología , Enfermedades de la Retina/genética , Células Fotorreceptoras Retinianas Bastones/fisiología , Opsinas de Bastones/clasificación , Análisis de Secuencia de Proteína , Vertebrados/clasificación
16.
Proc Natl Acad Sci U S A ; 100(14): 8308-13, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12824471

RESUMEN

Many fish, amphibians, reptiles, birds, and some mammals use UV vision for such basic activities as foraging, mate selection, and communication. UV vision is mediated by UV pigments in the short wavelength-sensitive type 1 (SWS1) group that absorb light maximally (lambda max) at approximately 360 nm. Reconstructed SWS1 pigments of most vertebrate ancestors have lambda max values of approximately 360 nm, whereas the ancestral avian pigment has a lambda max value of 393 nm. In the nonavian lineage, UV vision in many modern species is inherited directly from the vertebrate ancestor, whereas violet vision in others has evolved by different amino acid replacements at approximately 10 specific sites. In the avian lineage, the origin of the violet pigment and the subsequent restoration of UV pigments in some species are caused by amino acid replacements F49V/F86S/L116V/S118A and S90C, respectively. The use of UV vision is associated strongly with UV-dependent behaviors of organisms. When UV light is not available or is unimportant to organisms, the SWS1 gene can become nonfunctional, as exemplified by coelacanth and dolphin.


Asunto(s)
Percepción de Color/genética , Evolución Molecular , Filogenia , Opsinas de Bastones/genética , Rayos Ultravioleta , Vertebrados/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Conducta Animal , Percepción de Color/fisiología , ADN Recombinante/genética , Ambiente , Eliminación de Gen , Duplicación de Gen , Humanos , Luz , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Seudogenes , Opsinas de Bastones/química , Opsinas de Bastones/clasificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Vertebrados/genética
17.
Cell Mol Life Sci ; 58(11): 1583-98, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11706986

RESUMEN

Sensitivity to ultraviolet light (UV) is achieved by photoreceptors in the eye that contain a class of visual pigments maximally sensitive to light at wavelengths <400 nm. It is widespread in the animal kingdom where it is used for mate choice, communication and foraging for food. UV sensitivity is not, however, a constant feature of the visual system, and in many vertebrate species, the UV-sensitive (UVS) pigment is replaced by a violet-sensitive (VS) pigment with maximal sensitivity between 410 and 435 nm. The role of protonation of the Schiff base-chromophore linkage and the mechanism for tuning of pigments into the UV is discussed in detail. Amino acid sequence analysis of vertebrate VS/UVS pigments indicates that the ancestral pigment was UVS, with loss of UV sensitivity occurring separately in mammals, amphibia and birds, and subsequently regained by a single amino acid substitution in certain bird species. In contrast, no loss of UV sensitivity has occurred in the UVS pigments of insects.


Asunto(s)
Pigmentos Retinianos/química , Opsinas de Bastones/química , Rayos Ultravioleta , Visión Ocular/fisiología , Animales , Evolución Molecular , Humanos , Modelos Moleculares , Estructura Molecular , Filogenia , Estructura Terciaria de Proteína , Retina/citología , Retina/metabolismo , Pigmentos Retinianos/clasificación , Pigmentos Retinianos/metabolismo , Opsinas de Bastones/clasificación , Opsinas de Bastones/metabolismo
18.
Mol Biol Evol ; 18(12): 2270-9, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11719576

RESUMEN

A comparative approach was taken for identifying amino acid substitutions that may be under positive Darwinian selection and are correlated with spectral shifts among orthologous and paralogous lepidopteran long wavelength-sensitive (LW) opsins. Four novel LW opsin fragments were isolated, cloned, and sequenced from eye-specific cDNAs from two butterflies, Vanessa cardui (Nymphalidae) and Precis coenia (Nymphalidae), and two moths, Spodoptera exigua (Noctuidae) and Galleria mellonella (Pyralidae). These opsins were sampled because they encode visual pigments having a naturally occurring range of lambda(max) values (510-530 nm), which in combination with previously characterized lepidopteran opsins, provide a complete range of known spectral sensitivities (510-575 nm) among lepidopteran LW opsins. Two recent opsin gene duplication events were found within the papilionid but not within the nymphalid butterfly families through neighbor-joining, maximum parsimony, and maximum likelihood phylogenetic analyses of 13 lepidopteran opsin sequences. An elevated rate of evolution was detected in the red-shifted Papilio Rh3 branch following gene duplication, because of an increase in the amino acid substitution rate in the transmembrane domain of the protein, a region that forms the chromophore-binding pocket of the visual pigment. A maximum likelihood approach was used to estimate omega, the ratio of nonsynonymous to synonymous substitutions per site. Branch-specific tests of selection (free-ratio) identified one branch with omega = 2.1044, but the small number of substitutions involved was not significantly different from the expected number of changes under the neutral expectation of omega = 1. Ancestral sequences were reconstructed with a high degree of certainty from these data. Reconstructed ancestral sequences revealed several instances of convergence to the same amino acid between butterfly and vertebrate cone pigments, and between independent branches of the butterfly opsin tree that are correlated with spectral shifts.


Asunto(s)
Duplicación de Gen , Lepidópteros/química , Opsinas de Bastones/química , Opsinas de Bastones/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Evolución Molecular , Genes de Insecto , Lepidópteros/genética , Luz , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Opsinas de Bastones/clasificación , Selección Genética , Alineación de Secuencia
19.
J Neurosci ; 21(16): 6405-12, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11487664

RESUMEN

The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/sangre , Células Fotorreceptoras de Vertebrados/clasificación , Adolescente , Adulto , Ritmo Circadiano/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Ojo/efectos de los fármacos , Ojo/metabolismo , Ojo/efectos de la radiación , Femenino , Humanos , Luz , Masculino , Midriáticos/administración & dosificación , Estimulación Luminosa/instrumentación , Estimulación Luminosa/métodos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Opsinas de Bastones/biosíntesis , Opsinas de Bastones/clasificación , Factores de Tiempo
20.
FEBS Lett ; 501(2-3): 151-5, 2001 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-11470275

RESUMEN

Previously, we reported that an opsin (Rc-MS) belonging to the SWS2 group opsins is expressed in bullfrog green rods [Hisatomi, O. et al., FEBS Lett., 1999, 447, 44-48]. An anti-Rc-MS antiserum recognized the cones of the Japanese common newt, Cynops pyrrhogaster, which has no green rods. We isolated a cDNA encoding an SWS2 group opsin (Cp-SWS2) from this newt and found that Cp-SWS2 is expressed in a small population of the cones. Our results suggest that SWS2 opsins can be expressed in either green rods or cones of caudata. It seems reasonable to suppose that green rods arose before amphibia were divided into caudata and anura.


Asunto(s)
Células Fotorreceptoras/metabolismo , Retina/metabolismo , Opsinas de Bastones/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , ADN Complementario/análisis , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/análisis , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Salamandridae , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...