Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 12871, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150758

RESUMEN

Pathological over-activity of the CA1 subfield of the human anterior hippocampus has been identified as a potential predictive marker for transition from a prodromal state to overt schizophrenia. Psychosis, in turn, is associated with elevated activity in the anterior subiculum, the hippocampal output stage directly activated by CA1. Over-activity in these subfields may represent a useful endophenotype to guide translationally predictive preclinical models. To recreate this endophenotype and study its causal relation to deficits in the positive and cognitive symptom domains, we optogenetically activated excitatory neurons of the ventral hippocampus (vHPC; analogous to the human anterior hippocampus), targeting the ventral subiculum. Consistent with previous studies, we found that vHPC over-activity evokes hyperlocomotion, a rodent correlate of positive symptoms. vHPC activation also impaired performance on the spatial novelty preference (SNP) test of short-term memory, regardless of whether stimulation was applied during the encoding or retrieval stage of the task. Increasing dopamine transmission with amphetamine produced hyperlocomotion, but was not associated with SNP impairments. This suggests that short-term memory impairments resulting from hippocampal over-activity likely arise independently of a hyperdopaminergic state, a finding that is consistent with the pharmaco-resistance of cognitive symptoms in patients.


Asunto(s)
Cognición , Endofenotipos , Hipocampo/fisiopatología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Análisis de Varianza , Animales , Biomarcadores , Dopamina/metabolismo , Femenino , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Optogenética/psicología , Polimorfismo de Nucleótido Simple , Células Piramidales/metabolismo , Roedores
2.
Proc Natl Acad Sci U S A ; 114(46): E9972-E9979, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29078397

RESUMEN

Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.


Asunto(s)
Amnesia Retrógrada/fisiopatología , Recuerdo Mental/fisiología , Neuronas/metabolismo , Optogenética/psicología , Animales , Conducta Animal , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Aprendizaje , Masculino , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Prótesis e Implantes , Columna Vertebral/patología , Sinapsis/metabolismo
3.
J Neurosci ; 33(15): 6343-9, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575833

RESUMEN

Positron emission tomography (PET) with [(18)F]2-fluoro-2-deoxy-D-glucose was used to measure changes in regional brain glucose metabolism (BGluM) in response to optogenetic stimulation (using the excitatory channelrhodopsin-2) of the nucleus accumbens (NAc) in awake rats. We demonstrated not only increases in BGluM that correlated with c-Fos expression in the region of stimulation, but also BGluM increases in the ipsilateral striatum, periaqueductal gray, and somatosensory cortex, and in contralateral amygdala, ventral pallidum, globus pallidus, and hippocampus, as well as decreases in BGluM in regions of the default mode network (retrosplenial cortex and cingulate gyrus) and secondary motor cortex. Additional exploration of c-Fos expression in regions found to be activated by PET results found corroborating evidence, with increased c-Fos expression in the ipsilateral somatosensory cortex, contralateral amygdala and globus pallidus, and bilateral periaqueductal gray. These findings are consistent with optogenetic excitation of the area of stimulation (NAc), as well as with stimulatory and inhibitory effects on downstream regions. They also confirm the utility of PET imaging to monitor connectivity in the awake rodent brain.


Asunto(s)
Mapeo Encefálico/psicología , Encéfalo/metabolismo , Glucosa/metabolismo , Vías Nerviosas/fisiología , Núcleo Accumbens/fisiología , Optogenética/psicología , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Channelrhodopsins , Fluorodesoxiglucosa F18 , Masculino , Actividad Motora/fisiología , Vías Nerviosas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Optogenética/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Vigilia
4.
Nat Neurosci ; 15(10): 1454-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22983208

RESUMEN

Premotor circuits help generate imitative behaviors and can be activated during observation of another animal's behavior, leading to speculation that these circuits participate in sensory learning that is important to imitation. Here we tested this idea by focally manipulating the brain activity of juvenile zebra finches, which learn to sing by memorizing and vocally copying the song of an adult tutor. Tutor song-contingent optogenetic or electrical disruption of neural activity in the pupil's song premotor nucleus HVC prevented song copying, indicating that a premotor structure important to the temporal control of birdsong also helps encode the tutor song. In vivo multiphoton imaging and neural manipulations delineated a pathway and a candidate synaptic mechanism through which tutor song information is encoded by premotor circuits. These findings provide evidence that premotor circuits help encode sensory information about the behavioral model before shaping and executing imitative behaviors.


Asunto(s)
Encéfalo/fisiología , Conducta Imitativa/fisiología , Aprendizaje/fisiología , Canto/fisiología , Animales , Pinzones , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/psicología , Modelos Neurológicos , Vías Nerviosas/fisiología , Optogenética/métodos , Optogenética/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...