Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204285

RESUMEN

Pathogenic intracellular bacteria, parasites and viruses have evolved sophisticated mechanisms to manipulate mammalian host cells to serve as niches for persistence and proliferation. The intracellular lifestyles of pathogens involve the manipulation of membrane-bound organellar compartments of host cells. In this review, we described how normal structural organization and cellular functions of endosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, or lipid droplets are targeted by microbial virulence mechanisms. We focus on the specific interactions of Salmonella, Legionella pneumophila, Rickettsia rickettsii, Chlamydia spp. and Mycobacterium tuberculosis representing intracellular bacterial pathogens, and of Plasmodium spp. and Toxoplasma gondii representing intracellular parasites. The replication strategies of various viruses, i.e., Influenza A virus, Poliovirus, Brome mosaic virus, Epstein-Barr Virus, Hepatitis C virus, severe acute respiratory syndrome virus (SARS), Dengue virus, Zika virus, and others are presented with focus on the specific manipulation of the organelle compartments. We compare the specific features of intracellular lifestyle and replication cycles, and highlight the communalities in mechanisms of manipulation deployed.


Asunto(s)
Interacciones Huésped-Patógeno , Orgánulos/metabolismo , Animales , Transporte Biológico , Biomarcadores , Metabolismo Energético , Interacciones Huésped-Parásitos , Humanos , Espacio Intracelular/metabolismo , Espacio Intracelular/microbiología , Espacio Intracelular/parasitología , Espacio Intracelular/virología , Orgánulos/microbiología , Orgánulos/parasitología , Orgánulos/ultraestructura , Fagocitosis
2.
Cell Microbiol ; 23(8): e13328, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33740320

RESUMEN

Annulate lamellae (AL) have been observed many times over the years on electron micrographs of rapidly dividing cells, but little is known about these unusual organelles consisting of stacked sheets of endoplasmic reticulum-derived membranes with nuclear pore complexes (NPCs). Evidence is growing for a role of AL in viral infection. AL have been observed early in the life cycles of the hepatitis C virus (HCV) and, more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a specific induction of mechanisms potentially useful to these pathogens. Like other positive-strand RNA viruses, these viruses induce host cells membranes rearrangements. The NPCs of AL could potentially mediate exchanges between these partially sealed compartments and the cytoplasm. AL may also be involved in regulating Ca2+ homeostasis or cell cycle control. They were recently observed in cells infected with Theileria annulata, an intracellular protozoan parasite inducing cell proliferation. Further studies are required to clarify their role in intracellular pathogen/host-cell interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Orgánulos/microbiología , Orgánulos/parasitología , Animales , COVID-19 , Citoplasma/virología , Retículo Endoplásmico/microbiología , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Humanos , Orgánulos/ultraestructura , Orgánulos/virología , SARS-CoV-2/fisiología
3.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406726

RESUMEN

Iron is an essential nutrient for the legume-rhizobia symbiosis and nitrogen-fixing bacteroids within root nodules of legumes have a very high demand for the metal. Within the infected cells of nodules, the bacteroids are surrounded by a plant membrane to form an organelle-like structure called the symbiosome. In this review, we focus on how iron is transported across the symbiosome membrane and accessed by the bacteroids.


Asunto(s)
Bacteroides/fisiología , Fabaceae/metabolismo , Hierro/metabolismo , Nitrógeno/metabolismo , Orgánulos/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis , Transporte Biológico , Fabaceae/microbiología , Fijación del Nitrógeno , Orgánulos/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
4.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585988

RESUMEN

A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, "Candidatus Hydrogenosomobacter endosymbioticus."IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.


Asunto(s)
Alphaproteobacteria/metabolismo , Anaerobiosis/fisiología , Cilióforos/microbiología , Euryarchaeota/metabolismo , Holosporaceae/fisiología , Orgánulos/microbiología , Simbiosis , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Medios de Cultivo/química , Euryarchaeota/clasificación , Euryarchaeota/genética , Holosporaceae/clasificación , Holosporaceae/genética , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Análisis de Secuencia de ADN
5.
Adv Exp Med Biol ; 997: 211-223, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815533

RESUMEN

Intracellular bacterial pathogens have evolved sophisticated mechanisms to hijack host cellular processes to promote their survival and replication inside host cells. Over the past two decades, much attention has been given to the strategies employed by these pathogens to manipulate various vesicular trafficking pathways. But in the past 5 years, studies have brought to light that intracellular bacteria also target non-vesicular trafficking pathways. Here we review how three vacuolar pathogens, namely, Legionella, Chlamydia, and Coxiella hijack components of cellular MCS with or without the formation of stable MCS. A common theme in the manipulation of MCS by intracellular bacteria is the dependence on the secretion of bacterial effector proteins. During the early stages of the Legionella life cycle, the bacteria connects otherwise unrelated cellular pathways (i.e., components of ER-PM MCS, PI4KIIIα, and Sac1 and the early secretory pathway) to remodel its nascent vacuole into an ER-like compartment. Chlamydia and Coxiella vacuoles establish direct MCS with the ER and target lipid transfer proteins that contain a FFAT motif, CERT, and ORP1L, respectively, suggesting a common mechanism of VAP-dependent lipid acquisition. Chlamydia also recruits STIM1, an ER calcium sensor involved in store-operated calcium entry (SOCE) at ER-PM MCS, and elucidating the role of STIM1 at ER-Chlamydia inclusion MCS may uncover additional role for these contacts. Altogether, the manipulation of MCS by intracellular bacterial pathogens has open a new and exciting area of research to investigate the molecular mechanisms supporting pathogenesis.


Asunto(s)
Infecciones Bacterianas/microbiología , Chlamydia/patogenicidad , Coxiella/patogenicidad , Membranas Intracelulares/microbiología , Legionella/patogenicidad , Microdominios de Membrana/microbiología , Orgánulos/microbiología , Animales , Infecciones Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Chlamydia/metabolismo , Coxiella/metabolismo , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Legionella/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Virulencia
6.
Sci Rep ; 6: 27085, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255932

RESUMEN

Tunnelling nanotubes and cytonemes function as highways for the transport of organelles, cytosolic and membrane-bound molecules, and pathogens between cells. During viral infection in the model organism Drosophila melanogaster, a systemic RNAi antiviral response is established presumably through the transport of a silencing signal from one cell to another via an unknown mechanism. Because of their role in cell-cell communication, we investigated whether nanotube-like structures could be a mediator of the silencing signal. Here, we describe for the first time in the context of a viral infection the presence of nanotube-like structures in different Drosophila cell types. These tubules, made of actin and tubulin, were associated with components of the RNAi machinery, including Argonaute 2, double-stranded RNA, and CG4572. Moreover, they were more abundant during viral, but not bacterial, infection. Super resolution structured illumination microscopy showed that Argonaute 2 and tubulin reside inside the tubules. We propose that nanotube-like structures are one of the mechanisms by which Argonaute 2, as part of the antiviral RNAi machinery, is transported between infected and non-infected cells to trigger systemic antiviral immunity in Drosophila.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Orgánulos/metabolismo , ARN Bicatenario/genética , Proteínas Virales/antagonistas & inhibidores , Actinas/genética , Actinas/metabolismo , Animales , Proteínas Argonautas/metabolismo , Transporte Biológico , Comunicación Celular , Línea Celular , Dicistroviridae/genética , Dicistroviridae/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiología , Drosophila melanogaster/ultraestructura , Drosophila melanogaster/virología , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Orgánulos/microbiología , Orgánulos/ultraestructura , Orgánulos/virología , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/crecimiento & desarrollo , Interferencia de ARN , ARN Bicatenario/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
7.
Curr Opin Cell Biol ; 41: 132-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267617

RESUMEN

Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.


Asunto(s)
Bacterias/metabolismo , Células Eucariotas/microbiología , Espacio Intracelular/microbiología , Animales , Evolución Biológica , Orgánulos/microbiología , Simbiosis
8.
mBio ; 7(2): e00243-16, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27073090

RESUMEN

UNLABELLED: Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. IMPORTANCE: Human mycoplasma pneumonia, epidemic all over the world in recent years, is caused by a pathogenic bacterium,Mycoplasma pneumoniae This tiny bacterium, about 2 µm in cell body length, glides on the surface of the human trachea to infect the host by binding to sialylated oligosaccharides, which are also the binding targets of influenza viruses. The mechanism of mycoplasmal gliding motility is not related to any other well-studied motility systems, such as bacterial flagella and cytoplasmic motor proteins. Here, we visualized the attachment organelle, a cellular architecture for gliding, three dimensionally by using electron cryotomography and other conventional methods. A possible gliding mechanism has been suggested based on the architectural images.


Asunto(s)
Adhesión Bacteriana , Mycoplasma pneumoniae/fisiología , Orgánulos/ultraestructura , Neumonía por Mycoplasma/microbiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Microscopía por Crioelectrón , Humanos , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/ultraestructura , Orgánulos/microbiología , Conformación Proteica
9.
Cell Microbiol ; 18(3): 330-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26762760

RESUMEN

Invasive bacterial pathogens are engulfed upon host cell entry in a vacuolar environment called the bacteria-containing vacuole (BCV). BCVs directly contact with numerous host compartments, mainly vesicles of the endocytic pathway, such as endosomes or lysosomes. In addition, they also interact with the endoplasmic reticulum and endomembranes of the secretory pathway. These connections between the pathogen and the host occur either through heterotypic membrane fusions or through membrane contact sites. The precise regulation of BCV contacts with host compartments defines the constitution of the intracellular bacterial niche. It emerges that the associated pathways may control the stability of the BCV resulting either in vacuolar or cytoplasmically growing bacteria. Here, we will portray how the usage of novel proteomics and imaging technologies allows comparison of the communication of different host cell compartments with four relevant intracellular human pathogens, namely Salmonella enterica, Legionella pneumophila, Shigella flexneri and Francisella tularensis. The first two remain mainly within the BCV, and the latter two escape into the cytoplasm.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Orgánulos/microbiología , Salmonella enterica/patogenicidad , Vacuolas/microbiología , Francisella tularensis/patogenicidad , Humanos , Legionella pneumophila/patogenicidad , Shigella flexneri/patogenicidad
10.
Nat Rev Microbiol ; 14(1): 5-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26594043

RESUMEN

Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.


Asunto(s)
Bacterias/crecimiento & desarrollo , Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Orgánulos/microbiología , Animales , Humanos , Modelos Biológicos , Plantas
11.
Microsc Microanal ; 20(1): 228-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24397934

RESUMEN

Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.


Asunto(s)
Simbiosis/fisiología , Trypanosomatina/microbiología , Trypanosomatina/fisiología , Bacterias , Ciclo Celular/fisiología , División Celular/fisiología , ADN Protozoario/análisis , ADN Protozoario/química , Microscopía Fluorescente , Orgánulos/química , Orgánulos/microbiología , Trypanosomatina/química , Trypanosomatina/citología
13.
Pathog Dis ; 69(2): 72-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23821471

RESUMEN

The bacterium Chlamydia trachomatis and the protozoan parasite Toxoplasma gondii are the causative agents of chlamydiosis and toxoplasmosis in humans, respectively. Both microorganisms are obligate intracellular pathogens and notorious for extensively modifying the cytoskeletal architecture and the endomembrane system of their host cells to establish productive infections. This review highlights the similar tactics developed by these two pathogens to manipulate their host cell despite their genetic unrelatedness. Using an in vitro cell culture model whereby single fibroblasts are infected by C. trachomatis and T. gondii simultaneously, thus setting up an intracellular competition, we demonstrate that the solutions to the problem of intracellular survival deployed by the parasite and the bacterium may represent an example of convergent evolution, driven by the necessity to acquire nutrients in a hostile environment.


Asunto(s)
Infecciones por Chlamydia/complicaciones , Coinfección/microbiología , Coinfección/parasitología , Orgánulos/microbiología , Orgánulos/parasitología , Toxoplasmosis/complicaciones , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/fisiología , Fibroblastos/microbiología , Fibroblastos/parasitología , Humanos , Modelos Teóricos , Toxoplasma/fisiología , Toxoplasmosis/parasitología
14.
Annu Rev Cell Dev Biol ; 28: 411-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22578141

RESUMEN

Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.


Asunto(s)
Lípidos/fisiología , Animales , Presentación de Antígeno , Autofagia , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Hepacivirus/fisiología , Hepatitis C/inmunología , Hepatitis C/patología , Hepatitis C/virología , Interacciones Huésped-Patógeno , Humanos , Metabolismo de los Lípidos , Orgánulos/microbiología , Orgánulos/fisiología , Orgánulos/ultraestructura , Ensamble de Virus
15.
Mucosal Immunol ; 4(2): 217-26, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20861832

RESUMEN

Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor (IL-4R(-/-)) exhibit greater susceptibility to pulmonary challenge. In this study, we further evaluated the mechanism(s) by which mast cells/IL-4 control intramacrophage bacterial replication and host cell death, and found that IL-4R(-/-) mice exhibited significantly greater induction of active caspase-3 within lung macrophages than wild-type animals following intranasal challenge with either LVS or the human virulent type A strain SCHU S4. Treatment of LVS-infected bone-marrow-derived macrophages with a pancaspase inhibitor (zVAD) did not alter bacterial replication, but minimized active caspase-3 and other markers (Annexin V and propidium iodide) of cell death, whereas treatment with both rIL-4 and zVAD resulted in concomitant reduction of both parameters, suggesting that inhibition of bacterial replication by IL-4 was independent of caspase activation. Interestingly, IL-4-treated infected macrophages exhibited significantly increased ATP production and phagolysosomal acidification, as well as enhanced mannose receptor upregulation and increased internalization with acidification, which correlated with observations in mast cell-macrophage co-cultures, with resultant decreases in F. tularensis replication.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Francisella tularensis , Interacciones Huésped-Patógeno , Interleucina-4/inmunología , Mastocitos/inmunología , Fagosomas/inmunología , Tularemia/inmunología , Animales , Caspasa 3/metabolismo , Muerte Celular/inmunología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/inmunología , Regulación de la Expresión Génica , Lectinas Tipo C/metabolismo , Macrófagos Alveolares/enzimología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/farmacología , Orgánulos/química , Orgánulos/microbiología , Fagosomas/química , Receptores de Superficie Celular/metabolismo , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/inmunología , Transducción de Señal/inmunología
16.
J Leukoc Biol ; 87(3): 371-84, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19952355

RESUMEN

A hallmark of LL is the accumulation of Virchow's foamy macrophages. However, the origin and nature of these lipids, as well as their function and contribution to leprosy disease, remain unclear. We herein show that macrophages present in LL dermal lesions are highly positive for ADRP, suggesting that their foamy aspect is at least in part derived from LD (also known as lipid bodies) accumulation induced during ML infection. Indeed, the capacity of ML to induce LD formation was confirmed in vivo via an experimental model of mouse pleurisy and in in vitro studies with human peripheral monocytes and murine peritoneal macrophages. Furthermore, infected cells were shown to propagate LD induction to uninfected, neighboring cells by generating a paracrine signal, for which TLR2 and TLR6 were demonstrated to be essential. However, TLR2 and TLR6 deletions affected LD formation in bacterium-bearing cells only partially, suggesting the involvement of alternative receptors of the innate immune response besides TLR2/6 for ML recognition by macrophages. Finally, a direct correlation between LD formation and PGE(2) production was observed, indicating that ML-induced LDs constitute intracellular sites for eicosanoid synthesis and that foamy cells may be critical regulators in subverting the immune response in leprosy.


Asunto(s)
Eicosanoides/biosíntesis , Lepra/metabolismo , Lepra/microbiología , Metabolismo de los Lípidos , Mycobacterium leprae/patogenicidad , Orgánulos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Biopsia , Medios de Cultivo Condicionados/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Dinoprostona/biosíntesis , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Leucocitos Mononucleares/patología , Metabolismo de los Lípidos/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Mycobacterium leprae/efectos de los fármacos , Orgánulos/microbiología , Comunicación Paracrina/efectos de los fármacos , Perilipina-2 , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Piel/microbiología , Piel/patología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/metabolismo
17.
Tissue Cell ; 42(1): 24-31, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19643452

RESUMEN

Midgut epithelium in Filientomon takanawanum is composed of epithelial cells and single, sporadic regenerative cells. In 80% of analyzed specimens midgut epithelial cells, as fat body and gonads, are infected with rickettsia-like microorganism. In non-infected specimens young and completely differentiated epithelial cells are distinguished among epithelial cells. Characteristic for midgut epithelial cells regionalization in organelles distribution is not observed. Autophagy is the sporadic process, but if the cytoplasm of epithelium cells possesses numerous spherites and sporadic autophagosomes, the apoptosis begins. Necrosis is observed sporadically. In the midgut epithelium cells of about 80% of analyzed specimens rickettsia-like microorganisms are observed. The more rickettsia-like microorganisms occur in the cytoplasm, the more autophagosomes are formed, and the process of apoptosis proceeds intensively.


Asunto(s)
Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/ultraestructura , Insectos/fisiología , Insectos/ultraestructura , Mucosa Intestinal/fisiología , Mucosa Intestinal/ultraestructura , Animales , Apoptosis/fisiología , Autofagia/fisiología , Citoplasma/microbiología , Citoplasma/fisiología , Citoplasma/ultraestructura , Digestión/fisiología , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Parásitos/fisiología , Insectos/microbiología , Mucosa Intestinal/microbiología , Microscopía Electrónica de Transmisión , Microvellosidades/fisiología , Microvellosidades/ultraestructura , Necrosis/patología , Orgánulos/microbiología , Orgánulos/fisiología , Orgánulos/ultraestructura , Fagosomas/patología , Rickettsia/fisiología , Rickettsia/ultraestructura , Infecciones por Rickettsia/patología , Especificidad de la Especie , Simbiosis/fisiología
18.
Cell Microbiol ; 10(6): 1209-20, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18363881

RESUMEN

Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.


Asunto(s)
Acanthamoeba/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/inmunología , Enfermedad de los Legionarios/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Acanthamoeba/microbiología , Animales , Proteínas Bacterianas/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/microbiología , Interacciones Huésped-Patógeno , Inmunidad Innata , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Orgánulos/microbiología , Fagosomas/metabolismo , Fagosomas/microbiología , Virulencia
19.
PLoS Biol ; 4(11): e349, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17048989

RESUMEN

An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium) show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed). Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.


Asunto(s)
Citoplasma/microbiología , Infecciones por Salmonella/patología , Animales , Compartimento Celular , Farmacorresistencia Bacteriana , Humanos , Modelos Biológicos , Orgánulos/microbiología , Infecciones por Salmonella/tratamiento farmacológico , Salmonelosis Animal/tratamiento farmacológico , Salmonella enterica/efectos de los fármacos , Procesos Estocásticos
20.
Mycologia ; 98(1): 1-15, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16800299

RESUMEN

An isolate of Myzocytiopsis vermicola, a holocarpic parasite of Rhabditis nematodes, was studied with transmission electron microscopy (TEM) to follow development during infection, asexual and sexual reproduction. Nematodes became infected after attachment of apical cystospore buds to the nematode cuticle. Apical buds were packed with vesicles with dense fibrillar contents, which were absent from the thallus. Some thalli developed into sporangia while others became paired gametangial cells. Zoospore cleavage was often intrasporangial, although during the early stages of an epidemic partially differentiated zoospores usually were released via an exit tube into a fine vesicle. Packets of tripartite tubular hairs (TTH) were not observed in the cytoplasm of either developing or mature sporangia. TEM of sectioned material and whole mounts of zoospores revealed biflagellate zoospores, some without hairs and others with a proximal row of very short hairs on the anterior flagellum. Gametangial contact was via a short, walled fertilization tube and surplus antheridial and oogonial nuclei remained in their respective gametangial cells until disintegration of the periplasm. The mature oospores had a scalloped, electron opaque, epispore wall layer. These observations will be discussed in relation to the likely phylogenetic position of the Myzocytiopsidales within the oomycetes.


Asunto(s)
Oomicetos/crecimiento & desarrollo , Oomicetos/ultraestructura , Rhabditoidea/microbiología , Animales , Citoplasma/ultraestructura , Flagelos/ultraestructura , Microscopía , Microscopía Electrónica de Transmisión , Morfogénesis , Oomicetos/citología , Oomicetos/aislamiento & purificación , Orgánulos/microbiología , Orgánulos/ultraestructura , Fotomicrografía , Piel/microbiología , Esporas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA