Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.455
Filtrar
1.
Vet Microbiol ; 293: 110093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692193

RESUMEN

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Asunto(s)
Anticuerpos Antibacterianos , Vacunas Bacterianas , Pollos , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Vacunación , Animales , Mycoplasma gallisepticum/inmunología , Pollos/inmunología , Pollos/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/inmunología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Anticuerpos Antibacterianos/sangre
2.
Viruses ; 16(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675946

RESUMEN

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Asunto(s)
Pollos , Infecciones por Coronavirus , Perfilación de la Expresión Génica , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Tráquea , Animales , Tráquea/virología , Tráquea/inmunología , Pollos/virología , Virus de la Bronquitis Infecciosa/fisiología , Virus de la Bronquitis Infecciosa/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/genética , Células Epiteliales/virología , Células Epiteliales/inmunología , Transcriptoma , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética , Replicación Viral , Organismos Libres de Patógenos Específicos
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587413

RESUMEN

The characteristics of chicken droppings are closely linked to their health status. In prior studies, chicken droppings recognition is treated as an object detection task, leading to challenges in labeling and missed detection due to the diverse shapes, overlapping boundaries, and dense distribution of chicken droppings. Additionally, the use of intelligent monitoring equipment equipped with edge devices in farms can significantly reduce manual labor. However, the limited computational power of edge devices presents challenges in deploying real-time segmentation algorithms for field applications. Therefore, this study redefines the task as a segmentation task, with the main objective being the development of a lightweight segmentation model for the automated monitoring of abnormal chicken droppings. A total of 60 Arbor Acres broilers were housed in 5 specific pathogen-free cages for over 3 wk, and 1650 RGB images of chicken droppings were randomly divided into training and testing sets in an 8:2 ratio to develop and test the model. Firstly, by incorporating the attention mechanism, multi-loss function, and auxiliary segmentation head, the segmentation accuracy of the DDRNet was enhanced. Then, by employing the group convolution and an advanced knowledge-distillation algorithm, a lightweight segmentation model named DDRNet-s-KD was obtained, which achieved a mean Dice coefficient (mDice) of 79.43% and an inference speed of 86.10 frames per second (FPS), showing a 2.91% and 61.2% increase in mDice and FPS compared to the benchmark model. Furthermore, the DDRNet-s-KD model was quantized from 32-bit floating-point values to 8-bit integers and then converted to TensorRT format. Impressively, the weight size of the quantized model was only 13.7 MB, representing an 82.96% reduction compared to the benchmark model. This makes it well-suited for deployment on the edge device, achieving an inference speed of 137.51 FPS on Jetson Xavier NX. In conclusion, the methods proposed in this study show significant potential in monitoring abnormal chicken droppings and can provide an effective reference for the implementation of other agricultural embedded systems.


The characteristics of chicken droppings are closely related to their health. In this study, we developed a lightweight segmentation model for chicken droppings and evaluated its inference speed on the edge device with limited computational power. The results showed that the proposed model exhibits significant potential in the early warning of abnormal chicken droppings, which can help producers implement interventions before disease outbreaks, thereby avoiding great economic losses. Additionally, the model optimization and compression processes proposed in this study can provide an effective reference for the implementation of other embedded systems.


Asunto(s)
Pollos , Heces , Animales , Algoritmos , Crianza de Animales Domésticos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Organismos Libres de Patógenos Específicos
4.
Poult Sci ; 103(5): 103642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537408

RESUMEN

Fowl adenovirus serotype 11 (FAdV-11) is one of the primary causative agents of inclusion body hepatitis (IBH), which causes substantial economic losses in the world poultry industry. In this study, we characterized the genome of the fowl adenovirus serotype 11 (FAdV-11) isolate FJSW/2021. The full genome of FJSW/2021 was 44, 154 base pairs (bp) in length and had a similar organization to that of previously reported FAdV-11 isolates. Notably, compared with those of other reported FAdV-11 strains, the preterminal protein (pTP) of FAdV-11 FJSW/2021 has six amino acid (aa) insertions (S-L-R-I-I-C) between 470 and 475 and one aa mutation of L476F; moreover, the tandem repeat (TR) regions of TR1 and TR2 were 33 bp (1 repeat) and 1,080 bp (8 repeats) shorter than those of the Canadian nonpathogenic isolate ON NP2, respectively. The pathogenicity of FJSW/2021 was studied in 10-day-old specific pathogen-free chicken embryos following allantoic cavity inoculation and in 1-day-old, 1-wk-old and 2-wk-old SPF chickens following intramuscular inoculation with 107 TCID50 of the virus. The results showed that FJSW/2021 can induce typical severe IBH in chicks less than 2 wk old. These findings highlighted the genetic differences between the pathogenic and non-pathogenic FAdV-11 isolates. The data will provide guidance for identifying the virulence factors of FAdV-11 strains. The animal challenge model developed in our study will allow precise evaluation of the efficacy of potential FAdV-11 vaccine candidates.


Asunto(s)
Aviadenovirus , Pollos , Genoma Viral , Enfermedades de las Aves de Corral , Serogrupo , Animales , Enfermedades de las Aves de Corral/virología , China , Aviadenovirus/genética , Aviadenovirus/patogenicidad , Virulencia , Organismos Libres de Patógenos Específicos , Hepatitis Viral Animal/virología , Embrión de Pollo , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología
5.
mSphere ; 9(2): e0065423, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38286428

RESUMEN

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.IMPORTANCEAnimal models are an essential tool for evaluating clinical interventions. Unfortunately, they can often fail to accurately predict outcomes when translated into humans. This failure is due in part to a lack of natural infections experienced by most laboratory animals. To improve the mouse model, we and others have exposed laboratory mice to microbes they would experience in the wild. Although these models have been growing in popularity, these different models have not been specifically compared. Here, we directly compare how three different models of microbial experience impact the immune response to influenza vaccination. We find that these models are not the same and that the degree of microbial exposure affects the magnitude of the response to vaccination. These results provide an opportunity for the field to continue comparing and contrasting these systems to determine which models best recapitulate different aspects of the human condition.


Asunto(s)
Inmunidad , Vacunación , Animales , Ratones , Humanos , Modelos Animales de Enfermedad , Organismos Libres de Patógenos Específicos
6.
Poult Sci ; 103(1): 103194, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041892

RESUMEN

Avian influenza (AI) viruses pose a risk to the worldwide poultry industry. Ultimately, improving the efficiency of the H9N2 vaccine is necessary to better control low-pathogenic avian influenza-H9N2 by using natural immunostimulant. Therefore, the goal of the present study was to examine varying doses of the cyanobacterium Spirulina extract on the effectiveness of H9N2 vaccine. Thus, a total of 150 specific pathogen-free (SPF) chickens were allocated into 6 groups, 25 birds each, as follow: G1, G2, and G6 were supplemented with 200, 400, and 400 mg Spirulina extract/kg feed, respectively, whilst the feed in G3, G4, and G5 were not supplemented with Spirulina extract. At 21-days-old, only the chickens in G1, G2, and G3 were vaccinated with the H9N2 AI vaccine. After 4 wk postvaccination, the chickens in G1, G2, G3, G4, and G6 were challenged with H9N2 AI Egyptian strain. The challenged virus was selected from a recent circulating Egyptian strain during 2022, and it was related to A/quail/Hong Kong/G1/97-like virus lineage and clustered with G1-B sub-lineage EGY-2 group. It had a high amino acids identity percentage of 92.6% with the A/chicken/Iran/av1221/1998 (Boehringer Ingelheim) vaccine. The results of real-time reverse-transcriptase polymerase-chain-reaction (rRT-PCR) revealed that no shedding of the virus was reported in G1, G2, G3, and G5. The supplementation of Spirulina extract in low (200 mg/kg of feed) and high (400 mg/kg of feed) concentration with the birds vaccinated with H9N2 AI vaccine (G1 and G2) induced prominent immuno-stimulatory effect in a dose dependent manner where it strongly enhanced the phagocytic activities of broilers' peripheral blood monocytes, and lysozyme at all days postvaccination (dpv) and days postchallenge (dpc) compared to other groups with significant differences at all day of experiment and 21st dpv, 28th dpv, 7th dpc, and 14th dpc, respectively. The supplementation with Spirulina extract in G1 and G2 induced the highest hemagglutination inhibition antibody titer in a dose-dependent manner at all-time intervals. The antibody titer postvaccination was significantly increased in G1 and G2 at 14th, and 21st dpv, in comparison with G3. Furthermore, G1 and G2 showed higher significant antibody titers at 7th and 14th dpc, compared to other groups. Furthermore, Spirulina extract (200 and 400 mg/kg feed) in G1 and G2 showed anti-inflammatory effect in a dose dependant manner by downregulating nitric oxide levels at all times postchallenge with a significant difference at 3 to 7 dpc compared to G3, G4, and G6, with improved histopathological alterations in the trachea, lung, kidney, spleen, and bursa of Fabricius.  G6 supplied with 400 mg/kg Spirulina extract feed only without vaccination had a similar effect as vaccinated groups on innate immunity. However, it delayed the production of antibodies and did not prevent viral shedding as in vaccinated groups. In conclusion, vaccination in conjunction with either dose of Spirulina extract (G1, and G2) prevents viral shedding, increases the immune response, and reduces inflammation and histopathological change caused by H9N2 AI infection in a dose dependent manner. We recommend the use of 400 mg Spirulina extract/kg feed as a natural immunostimulant in conjunction with the H9N2 vaccine to achieve the highest possible level of protection against H9N2 AI infection.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Spirulina , Animales , Pollos , Organismos Libres de Patógenos Específicos , Eficacia de las Vacunas , Virulencia , Inmunidad , Adyuvantes Inmunológicos
7.
Vet Microbiol ; 288: 109950, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101079

RESUMEN

Newcastle disease (ND) and infectious bursal disease (IBD) are two viral infectious diseases that are extremely damaging to the poultry industry and are widespread throughout the world. It is necessary to develop a safe and effective vaccine against IBD and ND because vaccination is an effective preventive measure. It has been discovered that recombinant proteins expressed by an expression system in which a fragment of mammalian Immunoglobulin G (IgG) Fragment crystallizable (Fc) is linked to a segment of a gene have antibody-like properties that increase the exogenous protein's serum half-life. Heavy chain constant region 3 and heavy chain constant region 4 (CH3-CH4) of Avian Immunoglobulin Y (IgY) is structurally very similar to mammalian Ig G Fc. In this study, a bivalent vaccine rClone30-VP2L-CH3-CH4-GMCSF was developed by using NDV rClone30-chGM-CSF vector to produce VP2L-CH3-CH4 fusion protein. The vaccine has been given to 14-day-old specific pathogen free (SPF) free chickens to test whether it has the potential to prevent IBD and ND. Anti-IBDV and anti-NDV antibody levels in serum were evaluated using ELISA and HI, respectively, and the contents of CD4+ T, CD8+ T, and B cells in leukocytes were determined via flow cytometry. The contents and mRNA transcription levels of four inflammatory factors, IL-1ß, IL-4, IFN-γ and chGM-CSF, were detected by ELISA and real-time PCR respectively. The results showed that after vaccination with the rClone30-VP2L-CH3-CH4-GMCSF vaccine, the levels of anti NDV and anti IBDV antibodies in chickens were significantly higher than those of the rClone30 vaccine and commercial vaccines. Meanwhile, the contents and transcription levels of inflammatory factors in chickens inoculated with rClone30-VP2L-CH3-CH4-GMCSF were significantly increased, and the proliferation response of B cells, CD4+ and CD8+ T cells was also stronger. However, the rClone30-VP2L-CH3-CH4-GMCSF vaccine had no significant advantage over the rClone30-VP2L-GMCSF vaccine in any of the above-mentioned features. In summary, rClone30-VP2L-CH3-CH4-GMCSF can stimulate the body to produce a stronger immune response, showing its potential to be considered as vaccine against IBD and ND, but the addition of CH3-CH4 did not improve the vaccine's immune effect as expected. The research lays the foundation for developing vaccines for other infectious viral diseases and avoids a unrealistic vaccine optimization method.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Virus de la Enfermedad de Newcastle/genética , Vacunas Combinadas , Organismos Libres de Patógenos Específicos , Linfocitos T CD8-positivos , Anticuerpos Antivirales , Enfermedad de Newcastle/prevención & control , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinaria , Mamíferos
8.
Poult Sci ; 102(12): 103129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879167

RESUMEN

Immunosuppressive diseases cause great losses in the poultry industry, increasing the susceptibility to infections by other pathogens and promoting a suboptimal response to vaccination. Among them, infectious bursal disease virus (IBDV) arises as one of the most important around the world. IBDV infects immature B lymphocytes, affecting the immune status of birds and facilitating infections by other pathogens such as avian infectious bronchitis virus (IBV). Although it has been reported that the interaction between these viruses increases IBV clinical signs, there are no actual studies about the interaction between regional circulating isolates that validate this statement. In this context, the objective of our work was to evaluate the effect of the interaction between local isolates of IBDV (belonging to genogroup 4) and IBV (lineage GI-16) in chickens. Thus, specific pathogen-free chickens were orally inoculated with IBDV genogroup (G) 4 or with PBS at 5 d of age. At 14-days postinoculation (dpi) the animals were intratracheally inoculated with a GI-16 IBV or with PBS. At multiple time points, groups of birds were euthanized and different parameters such as histological damage, viral load, lymphocyte populations and specific antibodies were evaluated. The success of IBDV infection was confirmed by the severity of bursal atrophy, viral detection, and presence of anti-IBDV antibodies. In IBV-infected animals, the presence of viral genome was detected in both kidney and bursa. The coinfected animals showed higher degree of lymphocyte infiltration in kidney, higher rate of animals with IBV viral genome in bursa at 28 dpi, and a clear decrease in antibody response against IBV at 28, 35, and 40 dpi. The results indicate that the infection with the local isolate of IBDV affects the immune status of the chickens, causing major severe damage, in response to IBV infection, which could consequently severely affect the local poultry industry.


Asunto(s)
Infecciones por Birnaviridae , Coinfección , Virus de la Bronquitis Infecciosa , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Animales , Pollos , Coinfección/veterinaria , Anticuerpos Antivirales , Infecciones por Birnaviridae/veterinaria , Bolsa de Fabricio , Organismos Libres de Patógenos Específicos
9.
Poult Sci ; 102(10): 102953, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542940

RESUMEN

Infectious bronchitis (IB) Gammacoronavirus causes a highly contagious respiratory disease in chickens that is listed by the World Organisation for Animal Health (WOAH). Its high mutation ability has resulted in numerous variants against which the commercially available live or recombinant vaccines singly offer limited protection. Agrobacterium-mediated transient expression in Nicotiana benthamiana (tobacco) plants was used here to produce a virus-like particle (VLP) vaccine expressing a modified full-length IBV spike (S) protein of a QX-like IB variant. In a challenge study with the homologous live IB QX-like virus, VLP-vaccinated birds produced S protein-specific antibodies comparable to those produced by live-vaccinated birds seroconverting with mean geometric titers of 6.8 and 7.2 log2, respectively. The VLP-vaccinated birds had reduced oropharyngeal and cloacal viral shedding compared to an unvaccinated challenged control and were more protected against tracheal ciliostasis than the live-vaccinated birds. While the results appeared similar, plant-produced IB VLPs are safer, more affordable, easier to produce and update to antigenically match any emerging IB variant, making them a more suitable alternative to IBV control than live-attenuated vaccines.


Asunto(s)
Bronquitis , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Organismos Libres de Patógenos Específicos , Bronquitis/veterinaria , Vacunas Atenuadas
10.
Free Radic Biol Med ; 206: 143-161, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392951

RESUMEN

Trastuzumab (TRZ) is a first-line chemotherapeutic agent for HER-2 (ErbB2)-positive breast cancer. Unfortunately, its clinical use is limited due to its cardiotoxicity, referred to as TRZ-induced cardiotoxicity (TIC). However, the exact molecular mechanisms underlying the development of TIC remain unclear. Iron and lipid metabolism and redox reactions participate in the development of ferroptosis. Here, we show that ferroptosis-mediated mitochondrial dysfunction is involved in TIC in vivo and in vitro. We first established TIC models with BALB/c mice or neonatal rat cardiomyocytes and confirmed cardiomyopathy with echocardiography and inhibition of cell viability with a cell counting kit-8 examination, respectively. We showed that TRZ downregulated glutathione peroxidase 4 (GPx4) and elevated lipid peroxidation by-products, 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), by inactivating the ErbB2/PI3K/AKT/Nrf2 signalling pathway. Additionally, upregulated mitochondrial 4-HNE binds to voltage-dependent anion channel 1 (VDAC1), increases VDAC1 oligomerization, and subsequently induces mitochondrial dysfunction, as evidenced by mitochondrial permeability transition pore (mPTP) opening and decreased mitochondrial membrane potential (MMP) and ATP levels. Concomitantly, TRZ affected the mitochondrial levels of GSH/GSSG and iron ions and the stability of mitoGPx4. Ferroptosis inhibitors, such as ferrostatin-1 (Fer-1) or the iron chelator deferoxamine (DFO), ameliorate TRZ-induced cardiomyopathy. Overexpression of mitoGPx4 also suppressed mitochondrial lipid peroxidation and prevented TRZ-induced ferroptosis. Our study strongly suggests that targeting ferroptosis-mediated mitochondrial dysfunction is a potential cardioprotective strategy.


Asunto(s)
Antineoplásicos Inmunológicos , Cardiomiopatías , Mitocondrias , Trastuzumab , Femenino , Animales , Ratones , Ratones Endogámicos BALB C , Organismos Libres de Patógenos Específicos , Ferroptosis , Trastuzumab/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Cardiomiopatías/inducido químicamente , Ratas , Miocitos Cardíacos/efectos de los fármacos , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
11.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337046

RESUMEN

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Asunto(s)
Intestinos , Mucinas , Verrucomicrobia , Animales , Ratones , Mucinas/metabolismo , Esteroles/biosíntesis , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/metabolismo , Intestinos/microbiología , Organismos Libres de Patógenos Específicos , Elementos Transponibles de ADN/genética , Mutagénesis , Interacciones Microbiota-Huesped/genética , Espacio Intracelular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcripción Genética
12.
Poult Sci ; 102(8): 102846, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354616

RESUMEN

Fowl adenovirus serotype 8b (FAdV-8b), as causative agent of inclusion body hepatitis (IBH), poses a great threat to the poultry industry. Considering the importance of innate immune response in host against viral infections, we investigated pathogenicity of a FAdV-8b strain HLJ/151129 in 1-mo-old specific pathogen-free (SPF) chickens and immune responses of host to FAdV-8b infection in this study. The results demonstrated that no obvious clinical signs were observed in infected birds. Neither mobility nor mortality was observed in both FAdV-8b infected and control chickens, as well. However, hepatic necrosis and a small amount of inflammatory cell infiltration were observed by pathological analysis. Viral load was detected in bursa of Fabricius, cecal tonsils, liver, heart, spleen, Harderian glands, and thymus. Virus shedding and viremia generated as early as 3 days postinfection (dpi) (9/10) and reached the peak at 7 dpi (10/10). In addition, the infected birds had developed FAdV-specific antibodies at 7 dpi, and the antibody titers reached the peak at 14 dpi. Furthermore, the results demonstrated that the mRNA expression levels of most of toll-like receptors (TLRs), most of avian ß-defensins (AvBDs), and cytokines [interleukin (IL)-2, IL-6, and interferon (IFN)-γ], were significantly upregulated in most tissues at early phases of FAdV-8b infection, especially in liver and spleen. In contrast, FAdV-8b infection results in downregulation of TLR4, TLR5, and TLR21 expressions in some tissues of infected chickens. In addition, FAdV-8b infection upregulated myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) p65, and TIR-domain-containing adapter inducing interferon-ß (TRIF) expression in some tissues, while decreased NF-κBp65 and TRIF in spleen at both 72 hpi and 21 dpi. Taken together, these results confirmed that FAdV-8b could replicate in all investigated tissues of infected birds, and then, result in production of FAdV-specific antibody titers. Meanwhile, the FAdV-8b infection induces strong innate immune responses at early stage in chickens, which may associate with the viral pathogenesis.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Enfermedades de las Aves de Corral , Animales , Pollos , Virulencia , Serogrupo , Infecciones por Adenoviridae/veterinaria , Aviadenovirus/genética , Inmunidad Innata , Organismos Libres de Patógenos Específicos
13.
Poult Sci ; 102(7): 102701, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37150176

RESUMEN

Vitamin A is a fat-soluble vitamin that is a crucial mediator of the immune system. In this study, we evaluated the effect of oral vitamin A supplementation on host immune responses to infectious bronchitis virus (IBV) infection in chickens. Forty 1-day-old specific pathogen-free (SPF) chickens were fed a basal diet and randomly divided into 2 groups (n = 20 birds per group). Chickens in the experimental group were treated orally with vitamin A (dissolved in 0.1 mL soybean oil, at a dose of 8,000 IU per kg diet) daily. Birds in the control group were orally administered 0.1 mL soybean oil without vitamin A until 21 d of age. On d 21 after birth, all chickens were infected with 0.1 mL of 106.5 50% median embryo infectious dose of a pathogenic IBV strain (CK/CH/LDL/091022) by intraocular and intranasal routes. The results demonstrated that oral vitamin A supplementation did not affect the clinical course of disease and growth performance of SPF chickens. However, vitamin A supplementation increased the IBV-specific IgG serum levels and decreased the viral load in some tissues of IBV-infected chickens. In addition, the results demonstrated that vitamin A supplementation decreased the expression levels of most immune-related molecules in some tissues of IBV-infected chickens. Vitamin A supplementation decreased the mRNA expression levels of some avian ß-defensins (AvBD2, 3, 6, 7, 11, and 13) and increased the expression levels of AvBD9 and AvBD12 in some tissues of IBV-infected chickens. Similarly, vitamin A supplementation decreased the mRNA expression levels of some cytokines (interferon-γ, interleukin-1ß [IL-1ß], and IL-6) and increased the mRNA expression levels of IL-2 in some tissues of IBV-infected chickens. Furthermore, vitamin A supplementation decreased the mRNA expression levels of myeloid differentiation primary response protein 88, nuclear factor-κB p65, toll-like receptor 3, toll-like receptor 7, and CD4. In summary, the present study suggests that vitamin A supplementation enhances the immune function of SPF chickens against IBV infection by inhibiting viral replication, increasing the IBV-specific antibody titer, and suppressing the excessive inflammatory responses to IBV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Vitamina A , Aceite de Soja , Inmunidad , Suplementos Dietéticos , ARN Mensajero , Infecciones por Coronavirus/veterinaria , Organismos Libres de Patógenos Específicos
14.
Sci Adv ; 9(19): eade4443, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163587

RESUMEN

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.


Asunto(s)
Neoplasias de la Mama , Neuronas , Neoplasias Ováricas , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Ratones , Modelos Animales de Enfermedad , Humanos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sustancia P/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/secundario , Neuronas/patología , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Ovario/inervación , Virus del Papiloma Humano , Análisis de Supervivencia
15.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37163450

RESUMEN

Group 2 innate lymphoid cells (ILC2s) expressing IL-5 and IL-13 are localized at various mucosal tissues and play critical roles in the induction of type 2 inflammation, response to helminth infection, and tissue repair. Here, we reveal a unique ILC2 subset in the mouse intestine that constitutively expresses IL-4 together with GATA3, ST2, KLRG1, IL-17RB, and IL-5. In this subset, IL-4 expression is regulated by mechanisms similar to but distinct from those observed in T cells and is partly affected by IL-25 signaling. Although the absence of the microbiota had marginal effects, feeding mice with a vitamin B1-deficient diet compromised the number of intestinal IL-4+ ILC2s. The decrease in the number of IL-4+ ILC2s caused by the vitamin B1 deficiency was accompanied by a reduction in IL-25-producing tuft cells. Our findings reveal that dietary vitamin B1 plays a critical role in maintaining interaction between tuft cells and IL-4+ ILC2s, a previously uncharacterized immune cell population that may contribute to maintaining intestinal homeostasis.


Asunto(s)
Dieta , Mucosa Intestinal , Tiamina , Animales , Ratones , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Tiamina/metabolismo , Organismos Libres de Patógenos Específicos , Ratones Endogámicos C57BL , Interleucina-4/metabolismo , Microbioma Gastrointestinal , Organoides/citología , Organoides/inmunología , Ácido Trinitrobencenosulfónico
16.
Front Immunol ; 14: 1144976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143672

RESUMEN

Background: Neutrophil extracellular traps (NETs) play an important role in the development and progression of ulcerative colitis (UC). Peptidyl arginine deiminase 4 (PAD4) is essential for the formation of NETs via catalyzing histone citrullination. This study mainly to explore the role of PAD4-mediated NETs in intestinal inflammation of dextran sulfate sodium (DSS)-induced UC. Methods: Acute and chronic colitis mouse models were established by supplementing DSS in drinking water. Colon tissues from colitis mice were analyzed for the level of PAD4 expression, citrullinated histone H3(Cit-H3), intestinal histopathology, and inflammatory cytokines secretion. Serum samples were tested for systemic neutrophil activation biomarkers. Colitis mice administered with Cl-amidine, a PAD4 inhibitor, and PAD4 knockout mice were investigated to detect NETs formation, intestinal inflammation, and barrier function. Result: We found the formation of NETs significantly increased in DSS-induced colitis mice and was correlated with disease markers. Blocking NETs formation by Cl-amidine or PAD4 genetic knockout could alleviate clinical colitis index, intestinal inflammation, and barrier dysfunction. Conclusion: This study provided a research basis for the role of PAD4-mediated NETs formation in the pathogenesis of UC and suggested that inhibition of PAD4 activity and the formation of NETs may be helpful for the prevention and treatment of UC.


Asunto(s)
Colitis Ulcerosa , Trampas Extracelulares , Arginina Deiminasa Proteína-Tipo 4 , Animales , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Masculino , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Trampas Extracelulares/metabolismo , Sulfato de Dextran , Colon/metabolismo , Colon/patología
17.
Nat Commun ; 14(1): 1348, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906623

RESUMEN

Commensal bacteria are major contributors to mammalian metabolism. We used liquid chromatography mass spectrometry to study the metabolomes of germ-free, gnotobiotic, and specific-pathogen-free mice, while also evaluating the influence of age and sex on metabolite profiles. Microbiota modified the metabolome of all body sites and accounted for the highest proportion of variation within the gastrointestinal tract. Microbiota and age explained similar amounts of variation the metabolome of urine, serum, and peritoneal fluid, while age was the primary driver of variation in the liver and spleen. Although sex explained the least amount of variation at all sites, it had a significant impact on all sites except the ileum. Collectively, these data illustrate the interplay between microbiota, age, and sex in the metabolic phenotypes of diverse body sites. This provides a framework for interpreting complex metabolic phenotypes and will help guide future studies into the role that the microbiome plays in disease.


Asunto(s)
Metaboloma , Microbiota , Ratones , Animales , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Organismos Libres de Patógenos Específicos , Metabolómica/métodos , Mamíferos
18.
Lab Anim ; 57(1): 40-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36204980

RESUMEN

Health monitoring is essential for ensuring animal health and reliable research results. Each animal facility should establish adequate health monitoring methods, and microbiological quality control should be implemented through regular health surveillance. Recently, specific pathogen free (SPF) mice have been housed in individually ventilated cage (IVC) racks in the majority of mouse facilities globally, and health monitoring is implemented using a soiled bedding sentinel (SBS). Even though SBS monitoring is a standard method, it has a limitation in that some pathogens are not sufficiently transmitted to the sentinel housed in the IVC. The exhaust air dust polymerase chain reaction (EAD PCR) method has been reported to be a reliable complementary method to SBS monitoring based on research findings. In Korea, health monitoring programs using EAD PCR have not yet been applied to laboratory animal facilities. The microbiological status of mouse colonies housed in the two IVC racks was compared using SBS and EAD PCR monitoring in our SPF mouse facility. Except for Helicobacter spp. and Staphylococcus aureus, the detection of 16 pathogens did not differ between the two methods. In the detection of Helicobacter spp., EAD PCR was found to be more sensitive than SBS. Helicobacter spp. were not found by SBS, whereas four S. aureus positive samples were detected by either SBS or EAD PCR test. According to our findings, EAD PCR can be used as a supplement to SBS monitoring. Moreover, EAD PCR can reduce the number of animals used, making it a 3R (Replacement, Reduction, Refinement)-consistent method.


Asunto(s)
Helicobacter , Animales , Ratones , Polvo/análisis , Organismos Libres de Patógenos Específicos , Staphylococcus aureus , Vivienda para Animales , Reacción en Cadena de la Polimerasa , Ropa de Cama y Ropa Blanca
19.
Vet Ital ; 59(4)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38685825

RESUMEN

Fowl Pox Viruses (FPV) infect chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth etc. The birds, affected with FPV, also show anemia and ruffled appearance which are clinical symptoms of Reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of Reticuloendotheliosis Virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the Chorio-allantoic Membrane (CAM) of 10 days old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. But the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV virus, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Asunto(s)
Pollos , Virus de la Viruela de las Aves de Corral , Enfermedades de las Aves de Corral , Virus de la Reticuloendoteliosis , Animales , Virus de la Reticuloendoteliosis/aislamiento & purificación , Pollos/virología , Enfermedades de las Aves de Corral/virología , Virus de la Viruela de las Aves de Corral/genética , Virus de la Viruela de las Aves de Corral/aislamiento & purificación , Organismos Libres de Patógenos Específicos , Embrión de Pollo , Viruela Aviar/virología , Membrana Corioalantoides/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología
20.
AAPS PharmSciTech ; 23(8): 291, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319901

RESUMEN

Vaccines used for managing Newcastle disease virus (NDV) rely heavily on cold chain, and this results in major constraints in their successful application, shipping, and storage. This study was undertaken to improve the thermotolerance properties of live attenuated NDV vaccines using vacuum foam drying (VFD) technology. The live attenuated NDV vaccine formulated in 15% trehalose, 2.5% gelatin, 0.05% pluronic, and 25 mmol/L potassium phosphate buffer (T5) and dried using VFD showed improved heat tolerance in comparison to the vaccine formulated in T5 as well, but dried using freeze-drying (FD) method. The T5-formulated VFD vaccine was stored at 37°C for 120 days, 45°C for 7 days, and 60°C for 3 days; the virus titer loss decreased by no more than 1.0 Log10. In contrast, the FD vaccine prepared in T5 could only be stored at 37°C for 7-10 days. Furthermore, the T5-formulated NDV-VFD vaccine remained infectious when heated at 100°C for 30 min. Shelf-life studies confirmed the improved thermal tolerance of the T5-formulated NDV-VFD vaccine since it could be stably stored at 2-8°C for 42 months and 25°C for 15 months. Moreover, immunization of 1-month-old specific pathogen-free (SPF) chickens with the T5-formulated NDV-VFD vaccine stored at 25 and 37°C could produce hemagglutination inhibition (HI) antibody levels comparable to those of commercial NDV-FD vaccines, which require strict adherence to the cold chain. In conclusion, not only did the VFD technology improve the thermostability and long-term shelf life of the vaccine, it also maintained its immunogenicity.


Asunto(s)
Pollos , Virus de la Enfermedad de Newcastle , Animales , Vacunas Atenuadas , Vacio , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA