Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(6): e0012274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900784

RESUMEN

The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.


Asunto(s)
Amebiasis , Balamuthia mandrillaris , Encéfalo , Organoides , Humanos , Organoides/parasitología , Balamuthia mandrillaris/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/patología , Amebiasis/parasitología , Amebiasis/tratamiento farmacológico , Trofozoítos/efectos de los fármacos , Neuronas/parasitología , Células Madre Pluripotentes
2.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779829

RESUMEN

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Asunto(s)
Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/citología , Organoides/metabolismo , Infecciones por Strongylida/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/parasitología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Caliciformes/parasitología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/farmacología , Interacciones Huésped-Parásitos , Interleucina-13/farmacología , Interleucina-4/farmacología , Intestino Delgado/parasitología , Ratones Endogámicos C57BL , Nematospiroides dubius/metabolismo , Nematospiroides dubius/fisiología , Nippostrongylus/metabolismo , Nippostrongylus/fisiología , Organoides/citología , Organoides/parasitología , Infecciones por Strongylida/parasitología , Ácido Succínico/farmacología , Transcriptoma/efectos de los fármacos
3.
Curr Opin Microbiol ; 58: 124-129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113480

RESUMEN

Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients in resource-poor settings, and of waterborne outbreaks of disease in developed countries. However, there is no consistently effective treatment for vulnerable populations. Progress towards development of therapeutics for cryptosporidiosis has been hampered by lack of optimal culture systems to study it. New advances in organoid/enteroid technology have contributed to improved platforms to culture and propagate Cryptosporidium. Here we discuss recent breakthroughs in the field and highlight different models for functional ex vivo organoid or enteroidderived culture systems. These systems will lead to a better understanding of the mechanisms of host-parasite interactions in vivo.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Criptosporidiosis/parasitología , Cryptosporidium/fisiología , Intestinos/parasitología , Organoides/parasitología , Animales , Cryptosporidium/genética , Humanos , Modelos Biológicos
4.
Nature ; 585(7826): 574-578, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939089

RESUMEN

Epithelial organoids, such as those derived from stem cells of the intestine, have great potential for modelling tissue and disease biology1-4. However, the approaches that are used at present to derive these organoids in three-dimensional matrices5,6 result in stochastically developing tissues with a closed, cystic architecture that restricts lifespan and size, limits experimental manipulation and prohibits homeostasis. Here, by using tissue engineering and the intrinsic self-organization properties of cells, we induce intestinal stem cells to form tube-shaped epithelia with an accessible lumen and a similar spatial arrangement of crypt- and villus-like domains to that in vivo. When connected to an external pumping system, the mini-gut tubes are perfusable; this allows the continuous removal of dead cells to prolong tissue lifespan by several weeks, and also enables the tubes to be colonized with microorganisms for modelling host-microorganism interactions. The mini-intestines include rare, specialized cell types that are seldom found in conventional organoids. They retain key physiological hallmarks of the intestine and have a notable capacity to regenerate. Our concept for extrinsically guiding the self-organization of stem cells into functional organoids-on-a-chip is broadly applicable and will enable the attainment of more physiologically relevant organoid shapes, sizes and functions.


Asunto(s)
Homeostasis , Intestinos/embriología , Morfogénesis , Organoides/embriología , Andamios del Tejido , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Cryptosporidium parvum/patogenicidad , Células Madre Embrionarias Humanas/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Intestinos/citología , Intestinos/parasitología , Intestinos/patología , Ratones , Modelos Biológicos , Organoides/citología , Organoides/parasitología , Organoides/patología , Regeneración , Medicina Regenerativa , Células Madre , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos
5.
Emerg Microbes Infect ; 9(1): 1943-1954, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32820712

RESUMEN

Pluripotent stem cell-derived cerebral organoids have the potential to recapitulate the pathophysiology of in vivo human brain tissue, constituting a valuable resource for modelling brain disorders, including infectious diseases. Toxoplasma gondii, an intracellular protozoan parasite, infects most warm-blooded animals, including humans, causing toxoplasmosis. In immunodeficient patients and pregnant women, infection often results in severe central nervous system disease and fetal miscarriage. However, understanding the molecular pathophysiology of the disease has been challenging due to limited in vitro model systems. Here, we developed a new in vitro model system of T. gondii infection using human brain organoids. We observed that tachyzoites can infect human cerebral organoids and are transformed to bradyzoites and replicate in parasitophorous vacuoles to form cysts, indicating that the T. gondii asexual life cycle is efficiently simulated in the brain organoids. Transcriptomic analysis of T. gondii-infected organoids revealed the activation of the type I interferon immune response against infection. In addition, in brain organoids, T. gondii exhibited a changed transcriptome related to protozoan invasion and replication. This study shows cerebral organoids as physiologically relevant in vitro model systems useful for advancing the understanding of T. gondii infections and host interactions.


Asunto(s)
Encéfalo/parasitología , Interferón Tipo I/genética , Organoides/parasitología , Toxoplasma/fisiología , Animales , Encéfalo/citología , Encéfalo/inmunología , Línea Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas de Cultivo de Órganos , Organoides/citología , Organoides/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis
6.
Int J Parasitol ; 50(9): 707-718, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32659277

RESUMEN

The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling.


Asunto(s)
Ciego/parasitología , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Parásitos , Organoides , Tricuriasis/parasitología , Trichuris/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Organoides/metabolismo , Organoides/parasitología
7.
Trends Parasitol ; 36(2): 158-169, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31848118

RESUMEN

Plasmodium parasites cause malaria and are maintained between Anopheles mosquitoes and mammalian hosts in a complex life cycle. Malaria parasites occupy tissue niches that can be difficult to access, and models to study them can be challenging to recapitulate experimentally, particularly for Plasmodium species that infect humans. 2D culture models provide extremely beneficial tools to investigate Plasmodium biology but they have limitations. More complex 3D structural networks, such as organoids, have unveiled new avenues for developing more physiological tissue models, and their application to malaria research offers great promise. Here, we review current models for studying Plasmodium infection with a key focus on the obligate pre-erythrocytic stage that culminates in blood infection, causing malaria, and discuss how organoids should fulfil an important and unmet need.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Hígado/parasitología , Malaria , Organoides/parasitología , Parasitología/tendencias , Plasmodium/fisiología , Animales , Humanos
8.
Trends Parasitol ; 36(2): 170-181, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791691

RESUMEN

Organoids are multicellular culture systems that replicate tissue architecture and function, and are increasingly used as models of viral, bacterial, and protozoan infections. Organoids have great potential to improve our current understanding of helminth interactions with their hosts and to replace or reduce the dependence on using animal models. In this review, we discuss the applicability of this technology to helminth infection research, including strategies of co-culture of helminths or their products with organoids and the challenges, advantages, and drawbacks of the use of organoids for these studies. We also explore how complementing organoid systems with other cell types and components may allow more complex models to be generated in the future to further investigate helminth-host interactions.


Asunto(s)
Helmintos/fisiología , Organoides/parasitología , Animales , Helmintiasis/parasitología , Humanos , Parasitología/tendencias , Investigación/tendencias
9.
Am J Physiol Cell Physiol ; 317(6): C1205-C1212, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483700

RESUMEN

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl-/HCO3- exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl-/HCO3- exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


Asunto(s)
Antiportadores/genética , Antiportadores de Cloruro-Bicarbonato/genética , Criptosporidiosis/genética , Cryptosporidium parvum/patogenicidad , Regulación de la Expresión Génica/genética , Mucosa Intestinal/metabolismo , Transportadores de Sulfato/genética , Animales , Anticuerpos Neutralizantes/farmacología , Antiportadores/antagonistas & inhibidores , Antiportadores/metabolismo , Células CACO-2 , Antiportadores de Cloruro-Bicarbonato/antagonistas & inhibidores , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Criptosporidiosis/metabolismo , Criptosporidiosis/parasitología , Cryptosporidium parvum/fisiología , Interacciones Huésped-Parásitos/genética , Humanos , Íleon/metabolismo , Íleon/parasitología , Mucosa Intestinal/parasitología , Transporte Iónico , Quinasas Janus/genética , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos C57BL , Organoides/metabolismo , Organoides/parasitología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transportadores de Sulfato/antagonistas & inhibidores , Transportadores de Sulfato/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-30891433

RESUMEN

Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.


Asunto(s)
Tracto Gastrointestinal/parasitología , Interacciones Huésped-Patógeno , Toxoplasma/crecimiento & desarrollo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Animales , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Modelos Animales de Enfermedad , Humanos , Inmunidad Celular , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/parasitología , Modelos Teóricos , Organoides/parasitología
11.
Nat Microbiol ; 3(7): 814-823, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29946163

RESUMEN

Stem-cell-derived organoids recapitulate in vivo physiology of their original tissues, representing valuable systems to model medical disorders such as infectious diseases. Cryptosporidium, a protozoan parasite, is a leading cause of diarrhoea and a major cause of child mortality worldwide. Drug development requires detailed knowledge of the pathophysiology of Cryptosporidium, but experimental approaches have been hindered by the lack of an optimal in vitro culture system. Here, we show that Cryptosporidium can infect epithelial organoids derived from human small intestine and lung. The parasite propagates within the organoids and completes its complex life cycle. Temporal analysis of the Cryptosporidium transcriptome during organoid infection reveals dynamic regulation of transcripts related to its life cycle. Our study presents organoids as a physiologically relevant in vitro model system to study Cryptosporidium infection.


Asunto(s)
Criptosporidiosis/genética , Cryptosporidium/patogenicidad , Perfilación de la Expresión Génica/métodos , Organoides/parasitología , Criptosporidiosis/parasitología , Cryptosporidium/crecimiento & desarrollo , Regulación de la Expresión Génica , Humanos , Intestino Delgado/parasitología , Pulmón/parasitología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Análisis de Secuencia de ARN , Análisis Espacio-Temporal
12.
Int J Med Microbiol ; 302(4-5): 203-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22898491

RESUMEN

Possibilities to study the biology of human protozoan parasites and their interaction with the host remain severely limited, either because of non-existent or inappropriate animal models or because parasites cannot even be cultured in vitro due to strict human-host specificity or physiology. Here we discuss the prospects of using induced pluripotent stem cell (iPSC)-derived culture systems including organoids as a strategy to address many of these experimental bottlenecks. iPSCs already allow the generation of differentiated cell cultures for many human organs, and these cells and derivatives are amenable to reverse genetics in combination with advanced tools for genetic manipulation. We present examples of blood, neuron, liver, and intestine-dwelling protozoa, i.e. Plasmodium falciparum, Toxoplasma gondii and Giardia duodenalis, where iPSCs or organoids would allow addressing questions of cell and developmental biology, immunology, and pharmacology in unprecedented ways. Starting points and resources for iPSC experimentation are briefly discussed.


Asunto(s)
Interacciones Huésped-Parásitos , Células Madre Pluripotentes Inducidas/citología , Organoides/parasitología , Plasmodium/crecimiento & desarrollo , Plasmodium/patogenicidad , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Eritrocitos/parasitología , Hepatocitos/parasitología , Humanos , Células Madre Pluripotentes Inducidas/parasitología , Intestinos/parasitología , Estadios del Ciclo de Vida , Infecciones por Protozoos/parasitología , Genética Inversa/métodos , Toxoplasma/parasitología
13.
J Infect Dis ; 198(1): 143-9, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18498239

RESUMEN

BACKGROUND: Intestinal cells grown in microgravity produce a three-dimensional tissue assembly, or "organoid," similar to the human intestinal mucosa, making it an ideal model for enteric infections such as cryptosporidiosis. METHODS: HCT-8 cells were grown in a reduced-gravity, low-shear, rotating-wall vessel (RWV) and were infected with Cryptosporidium parvum oocysts. Routine and electron microscopy (EM), immunolabeling with fluorescein-labeled Vicia villosa lectin and phycoerythrin-labeled monoclonal antibody to a 15-kD surface-membrane protein, and quantitative polymerase chain reaction (qPCR) using probes for 18s rRNA of C. parvum and HCT-8 cells were performed. RESULTS: The RWV allowed development of columnar epithelium-like structures. Higher magnification revealed well-developed brush borders at the apical side of the tissue. Incubation with C. parvum resulted in patchy disruption of the epithelium and, at the surface of several epithelial cells, in localized infection with the organism. EM revealed irregular stunting of microvilli, foci of indistinct tight junctions, and areas of loose paracellular spaces. qPCR showed a 1.85-log (i.e., 70-fold) progression of infection from 6 h to 48 h of incubation. CONCLUSION: The HCT-8 organoid displayed morphologic changes indicative of successful and quantifiable infection with C. parvum. The HCT-8 organoid-culture system may have application in interventional in vitro studies of cryptosporidiosis.


Asunto(s)
Criptosporidiosis/patología , Cryptosporidium parvum/fisiología , Células Epiteliales/parasitología , Organoides/citología , Organoides/parasitología , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Criptosporidiosis/parasitología , Células Epiteliales/patología , Humanos
16.
Parasitology ; 87 (Pt 2): 199-209, 1983 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-6646806

RESUMEN

Recent studies on the motility of coccidian sporozoites have demonstrated a membrane-associated contractile system capable of moving certain intramembraneous components down the parasite surface propelling it forwards. The properties of this system resemble recorded observations on host cell invasion. In this study the invasive behaviour of Eimeria tenella and E. acervulina has been examined, with reference to the above findings, by light microscope and scanning and transmission electron microscopes. Known inhibitors of motility prevent invasion, though attachment appears unaffected. Invasion itself consists of 3 phases; attachment and orientation, induction of a parasitophorous vacuole and translocation of the parasite into the vacuole. Ultrastructural examination reveals a close membrane/membrane association maintained throughout invasion. From these results it is suggested that the parasite enters the parasitophorous vacuole by 'capping' the host/parasite junction down its body, so locomoting into the host cell. Such a model has two main advantages; it requires no additional modifications to either cell, and the specificity of membrane receptors would enable the one membrane-associated contractile system to be responsible for locomotion, antibody capping and host cell invasion.


Asunto(s)
Membrana Celular/parasitología , Eimeria/patogenicidad , Organoides/parasitología , Vacuolas/parasitología , Adhesividad , Animales , Línea Celular , Membrana Celular/ultraestructura , Citocalasina B/farmacología , Eimeria/fisiología , Eimeria/ultraestructura , Humanos , Magnesio/farmacología , Cloruro de Magnesio , Ratones , Microscopía Electrónica , Movimiento , Xenopus
17.
J Submicrosc Cytol ; 14(3): 471-82, 1982 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7175984

RESUMEN

Mouse macrophages and LA-9 cells were infected with Toxoplasma gondii. The percentages of cells containing parasites inside cytoplasmic vacuoles and with parasites attached to the cell surface were determined. Treatment of macrophages or LA-9 cells with either cytochalasin B or 4 degrees C before interaction with T. gondii decreased, but did not totally prevent their infection by the parasite. Observation of the host cell/parasite interaction by scanning electron microscopy revealed images of parasite penetration into cells, even when the cells had been incubated at 4 degrees C or in the presence of cytochalasin B. Two types of cytoplasmic vacuoles, which contained parasites were seen in thin sections of infected macrophages: in one type there was a small space between the membrane of the parasite and the membrane of the vacuole; in the second type the vacuole was very large and contained tubular structures. The results obtained are interpreted as indicative that two mechanisms are used by T. gondii to enter vertebrate cells.


Asunto(s)
Membrana Celular/parasitología , Macrófagos/parasitología , Organoides/parasitología , Toxoplasma/fisiología , Vacuolas/parasitología , Animales , Línea Celular , Frío , Citocalasina B/farmacología , Endocitosis , Interacciones Huésped-Parásitos , Ratones , Microscopía Electrónica
18.
J Protozool ; 28(2): 239-42, 1981 May.
Artículo en Inglés | MEDLINE | ID: mdl-7277257

RESUMEN

The interaction of Leishmania with lysosomes within macrophages in vivo has been investigated. Lysosomes labeled with colloidal gold in vivo fused with phagocytic vacuoles containing Leishmania amastigotes within the macrophages of infected footpad tissue of BALB/c mice. This localization of Leishmania within macrophage phagolysosomes in vivo is the first confirmation for any obligate intracellulaire protozoon that parasite-lysosome interactions in vitro occur in vivo.


Asunto(s)
Leishmania/fisiología , Lisosomas/parasitología , Macrófagos/parasitología , Organoides/parasitología , Fagocitosis , Vacuolas/parasitología , Animales , Coloides , Oro , Lisosomas/ultraestructura , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos BALB C , Vacuolas/ultraestructura
19.
Int J Biol Res Pregnancy ; 2(3): 134-41, 1981.
Artículo en Inglés | MEDLINE | ID: mdl-7333698

RESUMEN

A human Toxoplasma strain, isolated in mice from bioptic lymphoglandular tissue, has been cultured in vitro in continuous cell lines. Its presence in some parastized cells, with parasitophorous vacuoles surrounded by a cyst-like wall and filled with a cystozoite-like clone, was observed by electron microscopy. These characteristic and constant features were confined in different cell line cultures and are suggested as possible markers of low virulent strains.


Asunto(s)
Organoides/parasitología , Toxoplasma/patogenicidad , Vacuolas/parasitología , Animales , Encéfalo/parasitología , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Lisosomas/ultraestructura , Membranas/ultraestructura , Toxoplasma/crecimiento & desarrollo , Toxoplasma/ultraestructura
20.
Z Parasitenkd ; 66(1): 25-9, 1981.
Artículo en Inglés | MEDLINE | ID: mdl-7324540

RESUMEN

Intracellular forms of Leishmania mexicana amazonensis divide inside the phagocytic vacuole of macrophages. Some parasites attach to the membrane of the phagocytic vacuole while others remain free in the vacuole. Examination of thin sections of the attachment region by electron microscopy revealed a space of 2 nm between the membrane of the phagocytic vacuole and the plasma membrane of the parasite. Freeze-fracture replicas showed an array of intramembranous particles in some areas of the parasite's plasma membrane resembling a gap junction which, in other cells, is involved in the process of intracellular communication.


Asunto(s)
Leishmania/fisiología , Macrófagos/parasitología , Organoides/parasitología , Vacuolas/parasitología , Adhesividad , Animales , Membrana Celular/ultraestructura , Membranas Intracelulares/parasitología , Membranas Intracelulares/ultraestructura , Leishmania/ultraestructura , Macrófagos/ultraestructura , Microscopía Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...