Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Influenza Other Respir Viruses ; 18(5): e13315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798083

RESUMEN

BACKGROUND: Novel influenza viruses pose a potential pandemic risk, and rapid detection of infections in humans is critical to characterizing the virus and facilitating the implementation of public health response measures. METHODS: We use a probabilistic framework to estimate the likelihood that novel influenza virus cases would be detected through testing in different community and healthcare settings (urgent care, emergency department, hospital, and intensive care unit [ICU]) while at low frequencies in the United States. Parameters were informed by data on seasonal influenza virus activity and existing testing practices. RESULTS: In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity to seasonal influenza viruses, the median probability of detecting at least one infection per month was highest in urgent care settings (72%) and when community testing was conducted at random among the general population (77%). However, urgent care testing was over 15 times more efficient (estimated as the number of cases detected per 100,000 tests) due to the larger number of tests required for community testing. In scenarios that assumed increased clinical severity of novel virus infection, median detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to 100%) where testing also became more efficient. CONCLUSIONS: Our results suggest that novel influenza virus circulation is likely to be detected through existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity profile. These analyses can help inform future testing strategies to maximize the likelihood of novel influenza detection.


Asunto(s)
Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/virología , Estados Unidos/epidemiología , Orthomyxoviridae/aislamiento & purificación , Orthomyxoviridae/genética , Orthomyxoviridae/clasificación , Monitoreo Epidemiológico
2.
Influenza Other Respir Viruses ; 18(5): e13313, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757747

RESUMEN

BACKGROUND: Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are both respiratory viruses with similar clinical manifestations and modes of transmission. This study describes influenza data before and during the coronavirus disease pandemic (COVID-19) in Cameroon and SARS-CoV-2 data during the pandemic period. METHODS: The study ran from 2017 to 2022, and data were divided into two periods: before (2017-2019) and during (2020-2022) the COVID-19 pandemic. Nasopharyngeal samples collected from persons with respiratory illness were tested for influenza using the Centers for Disease Control and Prevention (CDC) typing and subtyping assays. During the COVID-19 pandemic, the respiratory specimens were simultaneously tested for SARS-CoV-2 using the DaAn gene protocol or the Abbott real-time SARS-CoV-2 assay. The WHO average curve method was used to compare influenza virus seasonality before and during the pandemic. RESULTS: A total of 6246 samples were tested. Influenza virus detection rates were significantly higher in the pre-pandemic period compared to the pandemic period (30.8% vs. 15.5%; p < 0.001). Meanwhile, the SARS-CoV-2 detection rate was 2.5%. A change in the seasonality of influenza viruses was observed from a bi-annual peak before the pandemic to no clear seasonal pattern during the pandemic. The age groups 2-4 and 5-14 years were significantly associated with higher influenza positivity rates in both pre-pandemic and pandemic periods. For SARS-CoV-2, all age groups above 15 years were the most affected population. CONCLUSION: The COVID-19 pandemic had a significant impact on the seasonal influenza by changing the seasonality of the virus and reducing its detection rates.


Asunto(s)
COVID-19 , Gripe Humana , SARS-CoV-2 , Humanos , Camerún/epidemiología , Gripe Humana/epidemiología , Gripe Humana/virología , COVID-19/epidemiología , COVID-19/diagnóstico , COVID-19/virología , Adolescente , Adulto , Niño , Preescolar , Persona de Mediana Edad , Adulto Joven , Femenino , Masculino , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Lactante , Anciano , Nasofaringe/virología , Estaciones del Año , Pandemias , Orthomyxoviridae/aislamiento & purificación , Orthomyxoviridae/genética , Orthomyxoviridae/clasificación
3.
PLoS One ; 17(3): e0264949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286334

RESUMEN

BACKGROUND: In the context of COVID-19 pandemic in Catalonia (Spain), the present study analyses respiratory samples collected by the primary care network using Acute Respiratory Infections Sentinel Surveillance System (PIDIRAC) during the 2019-2020 season to complement the pandemic surveillance system in place to detect SARS-CoV-2. The aim of the study is to describe whether SARS-CoV-2 was circulating before the first confirmed case was detected in Catalonia, on February 25th, 2020. METHODS: The study sample was made up of all samples collected by the PIDIRAC primary care network as part of the Influenza and Acute Respiratory Infections (ARI) surveillance system activities. The study on respiratory virus included coronavirus using multiple RT-PCR assays. All positive samples for human coronavirus were subsequently typed for HKU1, OC43, NL63, 229E. Every respiratory sample was frozen at-80°C and retrospectively studied for SARS-CoV-2 detection. A descriptive study was performed, analysing significant differences among variables related to SARS-CoV- 2 cases comparing with rest of coronaviruses cases through a bivariate study with Chi-squared test and statistical significance at 95%. RESULTS: Between October 2019 and April 2020, 878 respiratory samples from patients with acute respiratory infection or influenza syndrome obtained by PIDIRAC were analysed. 51.9% tested positive for influenza virus, 48.1% for other respiratory viruses. SARS-CoV-2 was present in 6 samples. The first positive SARS-CoV-2 case had symptom onset on 2 March 2020. These 6 cases were 3 men and 3 women, aged between 25 and 50 years old. 67% had risk factors, none had previous travel history nor presented viral coinfection. All of them recovered favourably. CONCLUSION: Sentinel Surveillance PIDIRAC enhances global epidemiological surveillance by allowing confirmation of viral circulation and describes the epidemiology of generalized community respiratory viruses' transmission in Catalonia. The system can provide an alert signal when identification of a virus is not achieved in order to take adequate preparedness measures.


Asunto(s)
COVID-19/diagnóstico , Coronavirus/clasificación , Orthomyxoviridae/clasificación , ARN Viral/genética , Infecciones del Sistema Respiratorio/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Niño , Preescolar , Coronavirus/genética , Coronavirus/aislamiento & purificación , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Atención Primaria de Salud , Estudios Retrospectivos , Vigilancia de Guardia , España/epidemiología , Adulto Joven
4.
Protein Expr Purif ; 192: 106046, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007721

RESUMEN

Production of broadly-reactive antibodies is critical for universal immunodiagnosis of rapidly-evolving influenza viruses. Most monoclonal antibodies (mAbs) are generated in mice using the hybridoma technology which involves labor- and time-consuming screening and low yield issues. In this study, a recombinant antibody based on a broadly-reactive mAb against the hemagglutinin (HA) stalk of H7N9 avian influenza virus was expressed in CHO cells and its biological characteristics, cross-reactivity and epitope recognition were identified. The variable genes of the parental antibody were amplified and cloned into the antibody-expressing plasmids containing the constant genes of murine IgG1. The recombinant antibody was expressed in high yield and purity in CHO cells and showed similar features to the parental antibody, including negative hemagglutination inhibition activity against H7N9 virus and high binding activity with the H7N9 HA protein. Notably, the recombinant antibody exhibited a broad reactivity with different influenza subtypes belonging to group 1 and group 2, which was associated with its recognition of a highly-conserved epitope in the stalk, as observed for the parental antibody. Our results suggest that cell-based antibody expression system can be utilized as an important alternative to the hybridoma technology for antibody production for influenza virus diagnostics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Orthomyxoviridae/efectos de los fármacos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/aislamiento & purificación , Células CHO , Cricetinae , Cricetulus , Reacciones Cruzadas , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Ratones , Orthomyxoviridae/clasificación , Orthomyxoviridae/inmunología
5.
Nat Commun ; 12(1): 6161, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697321

RESUMEN

A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Neuraminidasa/metabolismo , Orthomyxoviridae/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Peces/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Virus de la Influenza B/clasificación , Virus de la Influenza B/genética , Virus de la Influenza B/inmunología , Virus de la Influenza B/metabolismo , Ratones , Neuraminidasa/química , Neuraminidasa/genética , Neuraminidasa/inmunología , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , Filogenia , Receptores Virales/metabolismo
6.
Viruses ; 13(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34372620

RESUMEN

Protein modifications dynamically occur and regulate biological processes in all organisms. Towards understanding the significance of protein modifications in influenza virus infection, we performed a global mass spectrometry screen followed by bioinformatics analyses of acetylation, methylation and allysine modification in human lung epithelial cells in response to influenza A virus infection. We discovered 8 out of 10 major viral proteins and 245 out of 2280 host proteins detected to be differentially modified by three modifications in infected cells. Some of the identified proteins were modified on multiple amino acids residues and by more than one modification; the latter occurred either on different or same residues. Most of the modified residues in viral proteins were conserved across >40 subtypes of influenza A virus, and influenza B or C viruses and located on the protein surface. Importantly, many of those residues have already been determined to be critical for the influenza A virus. Similarly, many modified residues in host proteins were conserved across influenza A virus hosts like humans, birds, and pigs. Finally, host proteins undergoing the three modifications clustered in common functional networks of metabolic, cytoskeletal, and RNA processes, all of which are known to be exploited by the influenza A virus.


Asunto(s)
Ácido 2-Aminoadípico/análogos & derivados , Interacciones Huésped-Patógeno/fisiología , Virus de la Influenza A/patogenicidad , Procesamiento Proteico-Postraduccional , Ácido 2-Aminoadípico/metabolismo , Células A549 , Acetilación , Animales , Biología Computacional/métodos , Células Epiteliales/virología , Interacciones Huésped-Patógeno/genética , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Espectrometría de Masas/métodos , Metilación , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/virología , Porcinos
7.
Virus Genes ; 57(5): 401-412, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34156583

RESUMEN

Influenza viruses have a high potential for genetic changes. The objectives of this study were to analyse influenza virus circulation in Bulgaria during the 2019/2020 season, to perform a phylogenetic and molecular analyses of the haemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains, and to identify amino acid substitutions compared to the current vaccine strains. Seasonal influenza viruses A(H3N2), A(H1N1)pdm09 and B/Victoria-lineage were detected using a real-time RT-PCR in 323 (23.3%), 149 (10.7%) and 138 (9.9%) out of 1387 patient samples studied, respectively. The HA genes of A(H3N2) viruses analysed belonged to clades 3C.3a (21 strains) and 3C.2a (5 strains): subclades 3C.2a1b + T131K, 3C.2a1b + T135K-B and 3C.2a1b + T135K-A. The clade 3C.3a and subclade 3C.2a1b viruses carried 5 and 14-17 substitutions in HA, as well as 3 and 9 substitutions in NA, respectively, in comparison with the A/Kansas/14/2017 vaccine virus, including some substitutions in the HA antigenic sites A, B, C and E. All 21 A(H1N1)pdm09 viruses sequenced fell into 6B.1A5A subclade. Amino acid sequence analysis revealed the presence of 7-11 substitutions in HA, compared to the A/Brisbane/02/2018 vaccine virus, three of which occurred in antigenic site Sb, along with 6-9 changes at positions in NA. All 10 B/Victoria-lineage viruses sequenced belonged to clade 1A with a triple deletion in HA1 (genetic group 1A(Δ3)B) and carried 7 and 3 substitutions in HA and NA, respectively, with respect to the B/Colorado/06/2017 vaccine virus. The results of this study confirm the rapid evolution of influenza viruses and the need for continuous antigenic and genetic surveillance.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Gripe Humana/genética , Neuraminidasa/genética , Orthomyxoviridae/genética , Sustitución de Aminoácidos/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/virología , Orthomyxoviridae/clasificación , Orthomyxoviridae/patogenicidad , Filogenia , Estaciones del Año
8.
Influenza Other Respir Viruses ; 15(5): 573-576, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33955176

RESUMEN

The world has experienced five pandemics in just over one hundred years, four due to influenza and one due to coronavirus (SARS-CoV-2). In each case of pandemic influenza, the pandemic influenza strain has replaced the previous seasonal influenza virus. Notably, throughout the SARS-CoV-2 pandemic, there has been a 99% reduction in influenza isolation globally. It is anticipated that influenza will re-emerge following the SARS-CoV-2 pandemic and circulate again. The potential for which influenza viruses will emerge is examined.


Asunto(s)
COVID-19 , Gripe Humana , Orthomyxoviridae , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Orthomyxoviridae/clasificación , Pandemias
9.
Ticks Tick Borne Dis ; 12(4): 101730, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33957484

RESUMEN

Hunters are at a higher risk for exposure to zoonotic pathogens due to their close interactions with wildlife and arthropod vectors. In this study, high throughput sequencing was used to explore the viromes of two tick species, Amblyomma dissimile and Haemaphysalis juxtakochi, removed from hunted wildlife in Trinidad and Tobago. We identified sequences from 3 new viral species, from the viral families Orthomyxoviridae, Chuviridae and Tetraviridae in A. dissimile.


Asunto(s)
Ciervos , Iguanas , Ixodidae/virología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/aislamiento & purificación , Animales , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Filogenia , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Trinidad y Tobago , Proteínas Virales/análisis
10.
Viruses ; 13(4)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805956

RESUMEN

Bats are natural reservoirs for many viruses, including several that are zoonotic. Two unusual H17N10 and H18N11 influenza viruses have been found in New World bats. Although neither of these viruses have been isolated, infectious clone technology has permitted significant progress to understand their biology, which include unique features compared to all other known influenza A viruses. In addition, an H9N2-like influenza A virus was isolated from Old World bats and it shows similar characteristics of normal influenza A viruses. In this review, current status and perspective on influenza A viruses identified in bats is reviewed and discussed.


Asunto(s)
Quirópteros/virología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Animales , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/inmunología , Zoonosis Virales/transmisión , Replicación Viral
11.
Viruses ; 13(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917376

RESUMEN

Hemagglutinin and neuraminidase, which constitute the glycoprotein spikes expressed on the surface of influenza A and B viruses, are the most exposed parts of the virus and play critical roles in the viral lifecycle. As such, they make prominent targets for the immune response and antiviral drugs. Neuraminidase inhibitors, particularly oseltamivir, constitute the most commonly used antivirals against influenza viruses, and they have proved their clinical utility against seasonal and emerging influenza viruses. However, the emergence of resistant strains remains a constant threat and consideration. Antivirals targeting the hemagglutinin protein are relatively new and have yet to gain global use but are proving to be effective additions to the antiviral repertoire, with a relatively high threshold for the emergence of resistance. Here we review antiviral drugs, both approved for clinical use and under investigation, that target the influenza virus hemagglutinin and neuraminidase proteins, focusing on their mechanisms of action and the emergence of resistance to them.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , Orthomyxoviridae/efectos de los fármacos , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Animales , Antivirales/clasificación , Antivirales/metabolismo , Ensayos Clínicos como Asunto , Inhibidores Enzimáticos/farmacología , Hemaglutininas Virales/metabolismo , Humanos , Gripe Humana/tratamiento farmacológico , Ratones , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/química , Orthomyxoviridae/clasificación , Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Oseltamivir/farmacología
12.
Int J Med Mushrooms ; 23(2): 1-11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639077

RESUMEN

This review provides results obtained by scientists from different countries on the antiviral activity of medicinal mushrooms against influenza viruses that can cause pandemics. Currently, the search for antiviral compounds is relevant in connection with the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Medicinal mushrooms contain biologically active compounds (polysaccharides, proteins, terpenes, melanins, etc.) that exhibit an antiviral effect. The authors present the work carried out at the State Research Center of Virology and Biotechnology Vector in Russia, whose mission is to protect the population from biological threats. The research center possesses a collection of numerous pathogenic viruses, which allowed screening of water extracts, polysaccharides, and melanins from fruit bodies and fungal cultures. The results of investigations on different subtypes of influenza virus are presented, and special attention is paid to Inonotus obliquus (chaga mushroom). Compounds produced from this mushroom are characterized by the widest range of antiviral activity. Comparative data are presented on the antiviral activity of melanin from natural I. obliquus and submerged biomass of an effective strain isolated in culture against the pandemic strain of influenza virus A/California/07/09 (H1N1 pdm09).


Asunto(s)
Agaricales/química , Antivirales/farmacología , Factores Biológicos/farmacología , Orthomyxoviridae/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Factores Biológicos/aislamiento & purificación , Humanos , Inonotus/química , Melaninas/aislamiento & purificación , Melaninas/farmacología , Orthomyxoviridae/clasificación , Pandemias , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología
13.
Sci Rep ; 11(1): 3209, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547380

RESUMEN

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using in silico data, PACIFIC recovers the presence and relative concentrations of viruses with > 99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-end tool that enables the systematic monitoring of viral infections in the current global pandemic.


Asunto(s)
COVID-19/diagnóstico , Coinfección/diagnóstico , Aprendizaje Profundo , Infecciones por Virus ARN/diagnóstico , Virus ARN/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Prueba de COVID-19 , Coinfección/virología , Coronaviridae/aislamiento & purificación , Humanos , Metapneumovirus/clasificación , Metapneumovirus/aislamiento & purificación , Redes Neurales de la Computación , Orthomyxoviridae/clasificación , Orthomyxoviridae/aislamiento & purificación , Infecciones por Virus ARN/virología , Virus ARN/clasificación , RNA-Seq , Rhinovirus/clasificación , Rhinovirus/aislamiento & purificación , SARS-CoV-2/clasificación , Sensibilidad y Especificidad
14.
Arch Virol ; 166(4): 1193-1196, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580378

RESUMEN

The correlation of viral growth capability (n = 156) with the viral load in nasopharyngeal swabs (n = 76) was assessed. Epidemic influenza A/H1N1, A/H3N2, and B viruses showed a wide range of growth capability (104-1011 copies/mL) in Madin-Darby canine kidney cells. The growth was correlated with the nasopharyngeal viral load (r = 0.53). Six selected strains showed growth-dependent cell death (r = 0.96) in a growth kinetics assay. Epidemic influenza viruses exhibit a wide range of growth capability. Growth capability should be considered one of the key factors in disease prognosis.


Asunto(s)
Epidemias , Gripe Humana/epidemiología , Gripe Humana/virología , Orthomyxoviridae/crecimiento & desarrollo , Células A549 , Animales , Supervivencia Celular , Perros , Humanos , Japón/epidemiología , Células de Riñón Canino Madin Darby , Nasofaringe/virología , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Pronóstico , ARN Viral/análisis , Carga Viral
15.
Eur J Clin Microbiol Infect Dis ; 40(6): 1263-1269, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33474677

RESUMEN

Influenza viruses cause seasonal epidemics whose intensity varies according to the circulating virus type and subtype. We aim to estimate influenza-like illness (ILI) incidence attributable to influenza viruses in France from October 2014 to May 2019. Physicians participating in the French Sentinelles network reported the number of patients with ILI seen in consultation and performed nasopharyngeal swabs in a sample of these patients. The swabs were tested by RT-PCR for the presence of influenza viruses. These clinical and virological data were combined to estimate ILI incidence attributable to influenza viruses by subtypes and age groups. Influenza incidence rates over seasons ranged from 1.9 (95% CI, 1.9; 2.0) to 3.4% (95% CI, 3.2; 3.6) of the population. Each season, more than half of ILI cases were attributable to influenza. Children under 15 years were the most affected, with influenza incidence rates ranging from 3.0 (95% CI, 2.8;3.3) to 5.7% (95% CI, 5.3;6.1). Co-circulation of several (sub)types of influenza viruses was observed each year, except in 2016/2017 where A(H3N2) viruses accounted for 98.0% of the influenza cases. Weekly ILI incidences attributable to each influenza virus (sub)type were mostly synchronized with ILI incidence, except in 2014/2015 and 2017/2018, where incidence attributable to type B viruses peaked few weeks later. The burden of medically attended influenza among patients with ILI is significant in France, varying considerably across years and age groups. These results show the importance of influenza surveillance in primary care combining clinical and virological data.


Asunto(s)
Gripe Humana/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Francia/epidemiología , Humanos , Lactante , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Orthomyxoviridae/fisiología , Atención Primaria de Salud/estadística & datos numéricos , Estaciones del Año , Adulto Joven
16.
Influenza Other Respir Viruses ; 15(2): 227-234, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33107200

RESUMEN

BACKGROUND: Community-based studies of influenza and other respiratory viruses (eg, SARS-CoV-2) require laboratory confirmation of infection. During the current COVID-19 pandemic, social distancing guidelines require alternative data collection in order to protect both research staff and participants. Home-collected respiratory specimens are less resource-intensive, can be collected earlier after symptom onset, and provide a low-contact means of data collection. A prospective, multi-year, community-based cohort study is an ideal setting to examine the utility of home-collected specimens for identification of influenza. METHODS: We describe the feasibility and reliability of home-collected specimens for the detection of influenza. We collected data and specimens between October 2014 and June 2017 from the Household Influenza Vaccine Evaluation (HIVE) Study. Cohort participants were asked to collect a nasal swab at home upon onset of acute respiratory illness. Research staff also collected nose and throat swab specimens in the study clinic within 7 days of onset. We estimated agreement using Cohen's kappa and calculated sensitivity and specificity of home-collected compared to staff-collected specimens. RESULTS: We tested 336 paired staff- and home-collected respiratory specimens for influenza by RT-PCR; 150 staff-collected specimens were positive for influenza A/H3N2, 23 for influenza A/H1N1, 14 for influenza B/Victoria, and 31 for influenza B/Yamagata. We found moderate agreement between collection methods for influenza A/H3N2 (0.70) and B/Yamagata (0.69) and high agreement for influenza A/H1N1 (0.87) and B/Victoria (0.86). Sensitivity ranged from 78% to 86% for all influenza types and subtypes. Specificity was high for influenza A/H1N1 and both influenza B lineages with a range from 96% to 100%, and slightly lower for A/H3N2 infections (88%). CONCLUSIONS: Collection of nasal swab specimens at home is both feasible and reliable for identification of influenza virus infections.


Asunto(s)
Gripe Humana/diagnóstico , Cavidad Nasal/virología , Orthomyxoviridae/aislamiento & purificación , Manejo de Especímenes , Estudios de Factibilidad , Humanos , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Epidemiol Infect ; 149: e226, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35142278

RESUMEN

The corona virus disease-2019 (COVID-19) pandemic began in Wuhan, China, and quickly spread around the world. The pandemic overlapped with two consecutive influenza seasons (2019/2020 and 2020/2021). This provided the opportunity to study community circulation of influenza viruses and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in outpatients with acute respiratory infections during these two seasons within the Bavarian Influenza Sentinel (BIS) in Bavaria, Germany. From September to March, oropharyngeal swabs collected at BIS were analysed for influenza viruses and SARS-CoV-2 by real-time polymerase chain reaction. In BIS 2019/2020, 1376 swabs were tested for influenza viruses. The average positive rate was 37.6%, with a maximum of over 60% (in January). The predominant influenza viruses were Influenza A(H1N1)pdm09 (n = 202), Influenza A(H3N2) (n = 144) and Influenza B Victoria lineage (n = 129). In all, 610 of these BIS swabs contained sufficient material to retrospectively test for SARS-CoV-2. SARS-CoV-2 RNA was not detectable in any of these swabs. In BIS 2020/2021, 470 swabs were tested for influenza viruses and 457 for SARS-CoV-2. Only three swabs (0.6%) were positive for Influenza, while SARS-CoV-2 was found in 30 swabs (6.6%). We showed that no circulation of SARS-CoV-2 was detectable in BIS during the 2019/2020 influenza season, while virtually no influenza viruses were found in BIS 2020/2021 during the COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Gripe Humana/epidemiología , Vigilancia de Guardia , COVID-19/diagnóstico , Alemania/epidemiología , Humanos , Incidencia , Gripe Humana/diagnóstico , Orofaringe/virología , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , ARN Viral/genética , Estudios Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estaciones del Año
18.
Genomics ; 113(1 Pt 2): 778-784, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069829

RESUMEN

The coronavirus pandemic became a major risk in global public health. The outbreak is caused by SARS-CoV-2, a member of the coronavirus family. Though the images of the virus are familiar to us, in the present study, an attempt is made to hear the coronavirus by translating its protein spike into audio sequences. The musical features such as pitch, timbre, volume and duration are mapped based on the coronavirus protein sequence. Three different viruses Influenza, Ebola and Coronavirus were studied and compared through their auditory virus sequences by implementing Haar wavelet transform. The sonification of the coronavirus benefits in understanding the protein structures by enhancing the hidden features. Further, it makes a clear difference in the representation of coronavirus compared with other viruses, which will help in various research works related to virus sequence. This evolves as a simplified and novel way of representing the conventional computational methods.


Asunto(s)
Algoritmos , COVID-19/virología , Genoma Viral , Música , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Análisis de Ondículas , Secuencia de Aminoácidos , Análisis por Conglomerados , Coronavirus/clasificación , Coronavirus/genética , Ebolavirus/clasificación , Ebolavirus/genética , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Pandemias , ARN Viral/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas Virales/genética
19.
Virol J ; 17(1): 191, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287849

RESUMEN

BACKGROUND: Influenza virus remains a continuous and severe threat to public health worldwide, and its prevention and treatment have always been a major international issue. Because of its ability to evade immune surveillance through rapid antigenic drift and antigenic shift, broad-spectrum vaccines seem increasingly important. METHODS: A mAb named 3C12 from an immortalized hybrid cell was generated via immunizing mice with HA2 protein from A/chicken/Anhui/BRI99/2016 (AH/BRI99/16, H9N2) generated by prokaryotic expression. Then, its broad-spectrum activity was analyzed by WB and IFA. Next, the minimal linear epitope was identified via analyzing the reaction of a series of HA truncations with 3C12. Finally, the protective effects of 3C12 were evaluated in vitro and in vivo infection experiments. RESULTS: The mAb could react with the viruses of subtypes H1, H2, H5, H8, H9, H12, H13, H16, and HA protein of H18 in group 1, but failed to react with viruses in group 2. The minimal linear epitope targeted by the mAb was 433NAELLVL439 in full length of HA and localized in the C-helix region of HA2 (residue 95-101, HA2 numbering). What's more, the mAb 3C12 inhibited H1, H2, H5, H8, H9, H12, H13 and H16 virus-replication in vitro and also has shown effectiveness in preventing and treating disease in mice challenged with lethal dose of AH/BRI99/16 (H9N2) virus in vivo. These results suggested that the broadly reactive anti-HA stem mAb 3C12 exhibited prophylactic and therapeutic efficacy. CONCLUSIONS: Here, we have demonstrated that the linear epitope identified in this study could be a novel target for developing broad-spectrum influenza diagnostics or vaccine design, and the HA2-based monoclonal antibody is indeed a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hemaglutininas/inmunología , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Perros , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas/química , Humanos , Gripe Humana/inmunología , Gripe Humana/prevención & control , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Orthomyxoviridae/clasificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...