Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.640
Filtrar
1.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774749

RESUMEN

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Asunto(s)
Pulpa Dental , Ratones Noqueados , Osteoclastos , Osteogénesis , Resorción Radicular , Células Madre , Ácido Succínico , Animales , Ratones , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Resorción Radicular/patología , Resorción Radicular/metabolismo , Humanos , Ácido Succínico/metabolismo , Osteogénesis/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Medios de Cultivo Condicionados/farmacología , Células Cultivadas
2.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731604

RESUMEN

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Asunto(s)
Diferenciación Celular , FN-kappa B , Factores de Transcripción NFATC , Osteoclastos , Pleurotus , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Transducción de Señal , Animales , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Células RAW 264.7 , Ligando RANK/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Pleurotus/química , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/química , Oligosacáridos/farmacología , Oligosacáridos/química , Osteogénesis/efectos de los fármacos
3.
Commun Biol ; 7(1): 548, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719881

RESUMEN

Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Resorción Ósea , Hipertiroidismo , Ratones Noqueados , Osteoblastos , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Osteoblastos/metabolismo , Hipertiroidismo/metabolismo , Hipertiroidismo/genética , Hipertiroidismo/complicaciones , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/genética , Osteoporosis/metabolismo , Osteoporosis/genética , Osteoporosis/etiología , Osteoporosis/patología , Osteoclastos/metabolismo , Masculino , Diferenciación Celular
4.
Drug Des Devel Ther ; 18: 1515-1528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716369

RESUMEN

Purpose: Estrogen deficiency is the main reason of postmenopausal osteoporosis. Eldecalcitol (ED-71) is a new active vitamin D analogue clinically used in the treatment of postmenopausal osteoporosis. We aimed to investigate whether EphrinB2-EphB4 and RANKL/RANK/OPG signaling cooperate in mediating the process of osteoporosis by ED-71. Methods: In vivo, the ovariectomized (OVX) rats were administered orally with 30 ng/kg ED-71 once a day for 8 weeks. HE staining, Masson staining and Immunofluorescence staining were used to evaluate bone mass, bone formation, osteoclastogenesis associated factors and the expression of EphrinB2, EphB4, RANKL and OPG. In vitro, H2O2 stimulation was used to simulate the cell environment in osteoporosis. Immunofluorescence, quantitative real time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western Blot were applied to detect the expression of EphrinB2, EphB4, RANKL and OPG. In osteoblasts, EphB4 was knocked down by EphB4 small-interfering RNA (siRNA) transfection. LY294002 (PI3K inhibitor) or ARQ092 (AKT inhibitor) was used to block PI3K/AKT pathway. An indirect co-culture system of osteoblasts and osteoclasts was established. The mRNA and protein expression of osteoclastogenes is associated factors were tested by qRT-PCR and Western Blot. Results: ED-71 increased bone mass and decreased the number of osteoclasts in OVX rats. Moreover, ED-71 promoted the expression of EphrinB2, EphB4, and decreased the RANKL/OPG ratio in osteoblasts. Osteoclastogenesis was restrained when osteoclasts were indirectly co-cultured with ED-71-treated osteoblasts. After silencing of EphB4 expression in osteoblasts, ED-71 inhibited the expression of P-PI3K and P-AKT and increased the ratio of RANKL/OPG. This reversed the inhibitory effect of ED-71 on osteoclastogenes. Therefore, in ED-71-inhibited osteoclastogenes, EphB4 is a key factor affecting the secretion of RANKL and OPG by osteoblasts. EphB4 suppressed the RANKL/OPG ratio through activating PI3K/AKT signaling in osteoblasts. Conclusion: ED-71 inhibits osteoclastogenesis through EphrinB2-EphB4-RANKL/OPG axis, improving bone mass in ovariectomized rats. PI3K/AKT pathway is involved this process.


Asunto(s)
Efrina-B2 , Osteoprotegerina , Ovariectomía , Ligando RANK , Ratas Sprague-Dawley , Receptor EphB4 , Animales , Ratas , Ligando RANK/metabolismo , Ligando RANK/antagonistas & inhibidores , Femenino , Receptor EphB4/metabolismo , Receptor EphB4/antagonistas & inhibidores , Efrina-B2/metabolismo , Efrina-B2/antagonistas & inhibidores , Osteoprotegerina/metabolismo , Vitamina D/farmacología , Vitamina D/análogos & derivados , Osteogénesis/efectos de los fármacos , Células Cultivadas , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Transducción de Señal/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
5.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732267

RESUMEN

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Asunto(s)
Productos Biológicos , Remodelación Ósea , Osteoporosis , Humanos , Remodelación Ósea/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Animales
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731934

RESUMEN

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Asunto(s)
Remodelación Ósea , Ritmo Circadiano , Remodelación Ósea/genética , Animales , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Humanos , Osteoblastos/metabolismo , Osteogénesis/genética , Osteoclastos/metabolismo , Regulación de la Expresión Génica , Huesos/metabolismo
7.
J Gene Med ; 26(5): e3687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690623

RESUMEN

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Diferenciación Celular , Movimiento Celular , Ratones Noqueados , MicroARNs , Osteoclastos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Diferenciación Celular/genética , Movimiento Celular/genética , Ratones , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , Transducción de Señal , Osteogénesis/genética
8.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38713511

RESUMEN

While sclerostin-neutralizing antibodies (Scl-Abs) transiently stimulate bone formation by activating Wnt signaling in osteoblast lineage cells, they exert sustained inhibition of bone resorption, suggesting an alternate signaling pathway by which Scl-Abs control osteoclast activity. Since sclerostin can activate platelet-derived growth factor receptors (PDGFRs) in osteoblast lineage cells in vitro and PDGFR signaling in these cells induces bone resorption through M-CSF secretion, we hypothesized that the prolonged anticatabolic effect of Scl-Abs could result from PDGFR inhibition. We show here that inhibition of PDGFR signaling in osteoblast lineage cells is sufficient and necessary to mediate prolonged Scl-Ab effects on M-CSF secretion and osteoclast activity in mice. Indeed, sclerostin coactivates PDGFRs independently of Wnt/ß-catenin signaling inhibition, by forming a ternary complex with LRP6 and PDGFRs in preosteoblasts. In turn, Scl-Ab prevents sclerostin-mediated coactivation of PDGFR signaling and consequent M-CSF upregulation in preosteoblast cultures, thereby inhibiting osteoclast activity in preosteoblast/osteoclast coculture assays. These results provide a potential mechanism explaining the dissociation between anabolic and antiresorptive effects of long-term Scl-Ab.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Resorción Ósea , Osteoblastos , Osteoclastos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Transducción de Señal , Animales , Osteoblastos/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Anticuerpos Neutralizantes/farmacología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Linaje de la Célula , Osteogénesis/efectos de los fármacos , Diferenciación Celular
9.
J Alzheimers Dis ; 99(2): 773-785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701149

RESUMEN

Background: The amyloid-ß (Aß) enhances the number and activity of blood monocyte-derived osteoclasts (OCs). Individuals with osteoporosis (OP) face an increased risk of developing dementia or Alzheimer's disease (AD). Despite this association, the contribution of bone-resorbing OCs to the progression of AD pathology remains unclear. Objective: Our objective was to investigate the potential impacts of OCs on the development of AD pathology. Methods: We conducted targeted analysis of publicly available whole blood transcriptomes from patients with AD to characterize the blood molecular signatures and pathways associated with hyperactive OCs. In addition, we used APP23 transgenic (APP23 TG) AD mouse model to assess the effects of OCs pharmacological blockade on AD pathology and behavior. Results: Patients with AD exhibited increased osteoclastogenesis signature in their blood cells, which appears to be positively correlated with dysfunction of peripheral clearance of Aß mediated by immune cells. Long-term anti-resorptive intervention with Alendronate inhibited OC activity in APP23 mice, leading to improvements in peripheral monocyte Aß-degrading enzyme expression, Aß-deposition, and memory decline. Conclusions: Our findings suggest that OCs have a disease-promoting role in the development and progression of AD, possibly linked to their modulation of peripheral immunity. These findings guide future research to further elucidate the connection between OP and AD pathogenesis, highlighting the potential benefits of preventing OP in alleviating cognitive burden.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Ratones Transgénicos , Osteoclastos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Ratones , Humanos , Osteoclastos/metabolismo , Alendronato/farmacología , Alendronato/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico
10.
Bone ; 184: 117113, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703937

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Osteoblastos , Factor de Transcripción Sp7 , Animales , Osteoblastos/metabolismo , Femenino , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Masculino , Factor de Transcripción Sp7/metabolismo , Factor de Transcripción Sp7/genética , Osteogénesis/fisiología , Caracteres Sexuales , Ratones , Ratones Noqueados , Osteoclastos/metabolismo , Células Madre/metabolismo , Eliminación de Gen
11.
Bone Res ; 12(1): 29, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744829

RESUMEN

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Asunto(s)
Endosomas , Lisosomas , Osteoclastos , Animales , Osteoclastos/metabolismo , Lisosomas/metabolismo , Endosomas/metabolismo , Ratones , Ratones Noqueados , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/genética , Transporte de Proteínas , Ratones Endogámicos C57BL , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Diferenciación Celular , Eliminación de Gen , Catepsina K/metabolismo , Catepsina K/genética , Femenino , Proteínas de Unión a GTP rab7
12.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760744

RESUMEN

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Células Madre Mesenquimatosas , Nanopartículas , Animales , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Núcleo Celular/metabolismo , Curación de Fractura/efectos de los fármacos , Humanos , Proteínas de la Membrana
13.
Bioorg Chem ; 147: 107364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636434

RESUMEN

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Asunto(s)
Resorción Ósea , Osteogénesis , Ovariectomía , PPAR delta , Transducción de Señal , Animales , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Resorción Ósea/metabolismo , Ratas , PPAR delta/metabolismo , Femenino , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Células RAW 264.7 , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Relación Dosis-Respuesta a Droga , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Ratas Sprague-Dawley , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Diferenciación Celular/efectos de los fármacos
14.
J Med Virol ; 96(4): e29597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587211

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic has resulted in the loss of millions of lives, although a majority of those infected have managed to survive. Consequently, a set of outcomes, identified as long COVID, is now emerging. While the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the respiratory system, the impact of COVID-19 extends to various body parts, including the bone. This study aims to investigate the effects of acute SARS-CoV-2 infection on osteoclastogenesis, utilizing both ancestral and Omicron viral strains. Monocyte-derived macrophages, which serve as precursors to osteoclasts, were exposed to both viral variants. However, the infection proved abortive, even though ACE2 receptor expression increased postinfection, with no significant impact on cellular viability and redox balance. Both SARS-CoV-2 strains heightened osteoclast formation in a dose-dependent manner, as well as CD51/61 expression and bone resorptive ability. Notably, SARS-CoV-2 induced early pro-inflammatory M1 macrophage polarization, shifting toward an M2-like profile. Osteoclastogenesis-related genes (RANK, NFATc1, DC-STAMP, MMP9) were upregulated, and surprisingly, SARS-CoV-2 variants promoted RANKL-independent osteoclast formation. This thorough investigation illuminates the intricate interplay between SARS-CoV-2 and osteoclast precursors, suggesting potential implications for bone homeostasis and opening new avenues for therapeutic exploration in COVID-19.


Asunto(s)
COVID-19 , Osteoclastos , Humanos , Osteoclastos/metabolismo , Síndrome Post Agudo de COVID-19 , COVID-19/metabolismo , SARS-CoV-2 , Diferenciación Celular
15.
FASEB J ; 38(7): e23554, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588175

RESUMEN

Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-ß, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.


Asunto(s)
Huesos , Osteoclastos , Osteoclastos/metabolismo , Huesos/metabolismo , Remodelación Ósea , Transducción de Señal , Sistema Inmunológico , Ligando RANK/metabolismo
16.
Sci Rep ; 14(1): 8109, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582757

RESUMEN

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.


Asunto(s)
Resorción Ósea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Actinas/metabolismo , Resorción Ósea/metabolismo , Huesos/metabolismo , Osteogénesis
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645858

RESUMEN

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Asunto(s)
Desarrollo Óseo , Diferenciación Celular , Condrocitos , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Animales , Desarrollo Óseo/fisiología , Desarrollo Óseo/genética , Condrocitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Osteoclastos/metabolismo , Osteoclastos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Enfermedades Óseas/genética , Enfermedades Óseas/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/etiología
18.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38604070

RESUMEN

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Asunto(s)
Resorción Ósea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacología , Factores de Transcripción NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Osteogénesis , Ligando RANK/metabolismo
19.
J Nanobiotechnology ; 22(1): 185, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627717

RESUMEN

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.


Asunto(s)
Nanoestructuras , Osteogénesis , Células Endoteliales , Regeneración Ósea , Osteoclastos/metabolismo , Diferenciación Celular
20.
Biomolecules ; 14(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38672518

RESUMEN

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Osteoclastos , Osteogénesis , Humanos , Animales , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/citología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Osteogénesis/efectos de los fármacos , Resorción Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ligando RANK/metabolismo , Ligando RANK/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA