Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791601

RESUMEN

Osteoarthritis (OA) is a common joint disorder characterized by cartilage degeneration, often leading to pain and functional impairment. Minced cartilage implantation (MCI) has emerged as a promising one-step alternative for large cartilage defects. However, the source of chondrocytes for MCI remains a challenge, particularly in advanced OA, as normal cartilage is scarce. We performed in vitro studies to evaluate the feasibility of MCI using osteophyte cartilage, which is present in patients with advanced OA. Osteophyte and articular cartilage samples were obtained from 22 patients who underwent total knee arthroplasty. Chondrocyte migration and proliferation were assessed using cartilage fragment/atelocollagen composites to compare the characteristics and regenerative potential of osteophytes and articular cartilage. Histological analysis revealed differences in cartilage composition between osteophytes and articular cartilage, with higher expression of type X collagen and increased chondrocyte proliferation in the osteophyte cartilage. Gene expression analysis identified distinct gene expression profiles between osteophytes and articular cartilage; the expression levels of COL2A1, ACAN, and SOX9 were not significantly different. Chondrocytes derived from osteophyte cartilage exhibit enhanced proliferation, and glycosaminoglycan production is increased in both osteophytes and articular cartilage. Osteophyte cartilage may serve as a viable alternative source of MCI for treating large cartilage defects in OA.


Asunto(s)
Cartílago Articular , Proliferación Celular , Condrocitos , Osteoartritis , Osteofito , Humanos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/cirugía , Condrocitos/metabolismo , Condrocitos/patología , Osteofito/metabolismo , Osteofito/patología , Masculino , Femenino , Anciano , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/cirugía , Persona de Mediana Edad , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Células Cultivadas , Movimiento Celular
2.
Mol Biol Rep ; 51(1): 421, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483756

RESUMEN

BACKGROUND: Osteophyte development is a common characteristic of inflammatory skeletal diseases. Elevated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) participates in pathological osteogenesis. Integrin-linked kinase (ILK) positively regulates the osteoblastic differentiation of osteoprogenitors, but whether the ILK blockage prevents osteophytes and its potential mechanism is still unknown. Furthermore, the low-dose tumor necrosis factor-α (TNF-α) promotes osteogenic differentiation, but a lack of study reports on the relationship between this cytokine and ILK. OSU-T315 is a small ILK inhibitor, which was used to determine the effect of ILK inhibition on osteogenesis and osteophyte formation. METHODS AND RESULTS: The osteogenesis of BMSCs was evaluated using Alizarin red S staining, alkaline phosphatase, collagen type I alpha 2 chain, and bone gamma-carboxyglutamate protein. The expression and phosphorylation of protein were assessed through western blot. Immunofluorescence was employed to display the distribution of ß-catenin. microCT, hematoxylin-eosin, and safranin O/fast green staining were utilized to observe the osteophyte formation in collagen antibody-induced arthritis mice. We found that ILK blockage significantly declined calcium deposition and osteoblastic markers in a dose- and time-dependent manner. Furthermore, it lowered osteogenesis in the TNF-α-induced inflammatory microenvironment by diminishing the effect of ILK and inactivating the Akt/ GSK-3ß/ ß-catenin pathway. Nuclear ß-catenin was descended by OSU-T315 as well. Finally, the ILK suppression restrained osteophyte formation but not inflammation in vivo. CONCLUSIONS: ILK inhibition lowered osteogenesis in TNF-α-related inflammatory conditions by deactivating the Akt/ GSK-3ß/ ß-catenin pathway. This may be a potential strategy to alleviate osteophyte development in addition to anti-inflammatory treatment.


Asunto(s)
Células Madre Mesenquimatosas , Osteofito , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Osteogénesis , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Osteofito/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Células Cultivadas , Vía de Señalización Wnt
3.
Bone Res ; 12(1): 12, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395992

RESUMEN

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteofito , Animales , Humanos , Ratones , Cartílago Articular/patología , Condrocitos , Canales Iónicos/genética , Osteoartritis/genética , Osteogénesis/genética , Osteofito/metabolismo
4.
Am J Pathol ; 194(1): 135-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918800

RESUMEN

Osteophytes in osteoarthritis (OA) joints contribute to restriction of joint movement, joint pain, and OA progression, but little is known about osteophyte regulators. Examination of gene expression related to cartilage extracellular matrix, endochondral ossification, and growth factor signaling in articular cartilage and osteophytes obtained from OA knee joints showed that several genes such as COL1A1, VCAN, BGLAP, BMP8B, RUNX2, and SOST were overexpressed in osteophytes compared with articular cartilage. Ratios of mesenchymal stem/progenitor cells, which were characterized by co-expression of CD105 and CD166, were significantly higher in osteophytic cells than articular cells. A three-dimensional culture method for cartilage and osteophyte cells was developed by modification of cultures of self-assembled spheroid cell organoids (spheroids). These spheroids cultured in the media for mesenchymal stem cells containing transforming growth factor-ß3 showed characteristic morphologies and gene expression profiles of articular cartilage and osteophytes, respectively. The effects of IL-1ß, tumor necrosis factor-α, and IL-6 on the spheroids of articular and osteophytic cells were studied. To the best of our knowledge, they provide the first evidence that IL-6 suppresses the spheroid size of osteophytic cells by inducing apoptosis and reducing extracellular matrix molecules. These data show that IL-6 is the suppressor of osteophyte growth and suggest that IL-6 expression and/or activity are implicated in the regulation of osteophyte formation in pathologic joints.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Osteoartritis , Osteofito , Humanos , Cartílago Articular/patología , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-6/metabolismo , Articulación de la Rodilla/patología , Osteoartritis/patología , Osteoartritis de la Rodilla/metabolismo , Osteofito/genética , Osteofito/metabolismo , Osteofito/patología
5.
Biomater Adv ; 149: 213413, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37027967

RESUMEN

Osteophyte is an outgrowth of cartilage formed at the margins of the affected joint through endochondral ossification-like processes, and is one of the most common radiographic features of osteoarthritis (OA) that has been used to define the stage of disease. Osteophyte has been regarded to adapt the joint to the altered biomechanics of OA patients, limits joint movement and represent a source of joint pain, however, the mechanism of osteophyte formation, the morphology characteristics and biomechanical properties of osteophyte cells are remained unclear. In the present study, we isolated osteophyte cells and chondrocytes from late-stage OA patients who underwent total knee replacement surgeries, by applying Atomic Force Microscopy (AFM), we identified osteophyte cells were in irregular shape with dendrites, shrunk cell body, smooth surface and high elastic modulus (23.3 ± 5.4 kPa) when compared with chondrocytes (6.5 ± 1.8 kPa). In addition, osteophyte cells showed higher proliferation ability and colony formation capacity than chondrocytes. Mechanistically, we identified YAP1, the core transcriptional factor of Hippo signaling pathway, was highly expressed in osteophyte cell both at protein and RNA levels. Inactivation of Hippo/YAP1 signaling pathway by Verteporfin is sufficient to inhibit osteophyte cell proliferation in vitro and attenuate osteophyte formation in vivo. In conclusion, the morphology characteristic and biomechanical property of osteophyte cells at single cell level are quite different from chondrocytes, although we could not exclude other regulatory mechanisms, our findings suggested that Hippo/YAP1 is of great importance for osteophyte formation.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteofito , Animales , Ratones , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteofito/tratamiento farmacológico , Osteofito/metabolismo , Verteporfina/farmacología , Verteporfina/uso terapéutico , Verteporfina/metabolismo
6.
Int J Biochem Cell Biol ; 158: 106394, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871937

RESUMEN

Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteofito , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Metilación de ADN , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacología , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Proteínas del Tejido Nervioso/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Osteofito/genética , Osteofito/metabolismo , Proteínas Wnt/genética
7.
Int Immunopharmacol ; 112: 109225, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36095950

RESUMEN

Osteoarthritis (OA) is the most prevalent degenerative whole-joint disease characterized by cartilage degeneration, synovial hyperplasia, osteophyte formation, and subchondral bone sclerosis. Currently there are no disease-modifying treatments available for OA because its etiology and pathogenesis are largely unknown. Here we report that a natural carboxylic polyether ionophore that is used as an anti-tumor drug, salinomycin (SAL), may be a promising therapeutic drug for OA in the future. We found that SAL showed no cytotoxicity on mouse chondrocytes and displayed a protective effect against interleukin-1ß (IL-1ß), in cultured mouse chondrocytes and cartilage explants. Treatment with low SAL concentrations directly upregulated the anabolism factors collagen II and aggrecan, while it inhibited the catabolic factors matrix metalloproteinase-13 (MMP13) and metalloproteinase with thrombospondin motifs-5 (ADAMTS5) to protect against extracellular matrix (ECM) degradation, and also suppressed inflammatory responses in mouse chondrocytes. Furthermore, SAL reduced the severity of OA-associated changes and delayed cartilage destruction, subchondral bone sclerosis, and osteophyte formation in a destabilized medial meniscus (DMM) surgery-induced mouse OA model. Mechanistically, a low SAL concentration induced anabolism and inhibited catabolism in chondrocytes via inhibiting Lrp6 phosphorylation and Wnt/ß-catenin signaling. Our results suggested that SAL may serve as a potential disease-modifying therapeutic against OA pathogenesis.


Asunto(s)
Osteoartritis , Osteofito , Vía de Señalización Wnt , Animales , Ratones , Agrecanos/metabolismo , beta Catenina/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Ionóforos/metabolismo , Ionóforos/farmacología , Ionóforos/uso terapéutico , Metaloproteinasa 13 de la Matriz/metabolismo , Meniscos Tibiales/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Osteofito/metabolismo , Osteofito/patología , Esclerosis/metabolismo , Esclerosis/patología , Trombospondinas/metabolismo , Trombospondinas/farmacología , Trombospondinas/uso terapéutico
8.
Osteoarthritis Cartilage ; 30(5): 724-734, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227892

RESUMEN

OBJECTIVES: To investigate how ANP32A, previously linked to the antioxidant response, regulates Wnt signaling as unraveled by transcriptome analysis of Anp32a-deficient mouse articular cartilage, and its implications for osteoarthritis (OA) and diseases beyond the joint. METHODS: Anp32a knockdown chondrogenic ATDC5 cells were cultured in micromasses. Wnt target genes, differentiation markers and matrix deposition were quantified. Wnt target genes were determined in articular cartilage from Anp32a-deficient mice and primary human articular chondrocytes upon ANP32A silencing, using qPCR, luciferase assays and immunohistochemistry. Co-immunoprecipitation, immunofluorescence and chromatin-immunoprecipitation quantitative PCR probed the molecular mechanism via which ANP32A regulates Wnt signaling. Anp32a-deficient mice were subjected to the destabilization of the medial meniscus (DMM) OA model and treated with a Wnt inhibitor and an antioxidant. Severity of OA was assessed by cartilage damage and osteophyte formation. Human Protein Atlas data analysis identified additional organs where ANP32A may regulate Wnt signaling. Wnt target genes were determined in heart and hippocampus from Anp32a-deficient mice, and cardiac hypertrophy and fibrosis quantified. RESULTS: Anp32a loss triggered Wnt signaling hyper-activation in articular cartilage. Mechanistically, ANP32A inhibited target gene expression via histone acetylation masking. Wnt antagonist treatment reduced OA severity in Anp32a-deficient mice by preventing osteophyte formation but not cartilage degradation, contrasting with antioxidant treatment. Dual therapy ameliorated more OA features than individual treatments. Anp32a-deficient mice also showed Wnt hyper-activation in the heart, potentially explaining the cardiac hypertrophy phenotype found. CONCLUSIONS: ANP32A is a novel translationally relevant repressor of Wnt signaling impacting osteoarthritis and cardiac disease.


Asunto(s)
Cartílago Articular , Cardiopatías , Osteoartritis , Osteofito , Animales , Antioxidantes/metabolismo , Cardiomegalia/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Cardiopatías/metabolismo , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteofito/metabolismo , Vía de Señalización Wnt/fisiología
9.
Osteoarthritis Cartilage ; 30(6): 886-895, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358700

RESUMEN

OBJECTIVE: Cartilage collagen has very limited repair potential, though some turnover and incorporation has not been fully excluded. We aim to determine the regional turnover of human osteoarthritis cartilage. DESIGN: Patients scheduled for knee joint replacement surgery due to osteoarthritis were recruited in this prospective study of four weeks duration. Deuterium oxide (D2O) was administered orally by weekly boluses at 70% D2O, initially 150 ml followed by three boluses of 50 ml. Cartilage from the medial tibia plateau was sampled centrally, under the meniscus, and from osteophytes and treated enzymatically with hyaluronidase and trypsin. Samples were analysed for deuterium incorporation in alanine using mass spectrometry and for gene expression by real-time reverse transcriptase polymerase chain reaction. RESULTS: Twenty participants completed the study: mean (SD) age 64 ± 9.1 years, 45% female, BMI 29.5 ± 4.8 kg/m2. Enzymatically treated cartilage from central and submeniscal regions showed similar enrichments at 0.063% APE, while osteophytes showed significantly greater enrichment at 0.072% APE (95% confidence interval of difference) [0.004-0.015]). Fractional synthesis rates were similar for central 0.027%/day and submeniscal cartilage 0.022%/day but 10-fold higher in osteophytes 0.22%/day [0.098-0.363]. When compared to central cartilage, submeniscal cartilage had increased gene expression of MMP-3 and decreased lubricin expression. Untreated cartilage had higher turnover (enrichments at 0.073% APE) than enzymatically treated cartilage (0.063% APE). CONCLUSIONS: In OA, despite regional differences in gene expression, the turnover of the articular cartilage matrix across the entire joint surface is very limited, but higher turnover was observed in osteophyte cartilage.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Osteofito , Anciano , Cartílago Articular/metabolismo , Colágeno/metabolismo , Femenino , Humanos , Articulación de la Rodilla/metabolismo , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/cirugía , Osteocondrodisplasias , Osteofito/metabolismo , Estudios Prospectivos
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008966

RESUMEN

INTRODUCTION: Osteophytes are a prominent feature of osteoarthritis (OA) joints and one of the clinical hallmarks of the disease progression. Research on osteophytes is fragmentary and modes of its contribution to OA pathology are obscure. AIM: To elucidate the role of osteophytes in OA pathology from a perspective of molecular and cellular events. METHODS: RNA-seq of fully grown osteophytes, collected from tibial plateau of six OA patients revealed patterns corresponding to active extracellular matrix re-modulation and prominent participation of mast cells. Presence of mast cells was further confirmed by immunohistochemistry, performed on the sections of the osteophytes using anti-tryptase alpha/beta-1 and anti-FC epsilon RI antibodies and the related key up-regulated genes were validated by qRT-PCR. To test the role of OA synovial fluid (SF) in mast cell maturation as proposed by the authors, hematopoietic stem cells (HSCs) and ThP1 cells were cultured in a media supplemented with 10% SF samples, obtained from various grades of OA patients and were monitored using specific cell surface markers by flow cytometry. Proteomics analysis of SF samples was performed to detect additional markers specific to mast cells and inflammation that drive the cell differentiation and maturation. RESULTS: Transcriptomics of osteophytes revealed a significant upregulation of mast cells specific genes such as chymase 1 (CMA1; 5-fold) carboxypeptidase A3 (CPA3; 4-fold), MS4A2/FCERI (FCERI; 4.2-fold) and interleukin 1 receptor-like 1 (IL1RL1; 2.5-fold) indicating their prominent involvement. (In IHC, anti-tryptase alpha/beta-1 and anti- FC epsilon RI-stained active mast cells were seen populated in cartilage, subchondral bone, and trabecular bone.) Based on these outcomes and previous learnings, the authors claim a possibility of mast cells invasion into osteophytes is mediated by SF and present in vitro cell differentiation assay results, wherein ThP1 and HSCs showed differentiation into HLA-DR+/CD206+ and FCERI+ phenotype, respectively, after exposing them to medium containing 10% SF for 9 days. Proteomics analysis of these SF samples showed an accumulation of mast cell-specific inflammatory proteins. CONCLUSIONS: RNA-seq analysis followed by IHC study on osteophyte samples showed a population of mast cells resident in them and may further accentuate inflammatory pathology of OA. Besides subchondral bone, the authors propose an alternative passage of mast cells invasion in osteophytes, wherein OA SF was found to be necessary and sufficient for maturation of mast cell precursor into effector cells.


Asunto(s)
Diferenciación Celular , Mastocitos/citología , Mastocitos/metabolismo , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteofito/metabolismo , Líquido Sinovial/metabolismo , Biomarcadores , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Anotación de Secuencia Molecular , Osteoartritis/patología , Osteofito/patología
11.
Clin Nucl Med ; 46(7): 601-602, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33782317

RESUMEN

ABSTRACT: 68Ga-FAPI PET/CT has been used in the evaluation of a variety of malignancies. An increasing number of case studies on FAPI uptake in nonmalignant diseases is also gaining support and enthusiasm. We present a case of asymptomatic chronic cholecystitis and degenerative osteophyte detected incidentally by 68Ga-FAPI PET/CT.


Asunto(s)
Colecistitis/metabolismo , Osteofito/metabolismo , Osteofito/patología , Quinolinas/metabolismo , Transporte Biológico , Colecistitis/diagnóstico por imagen , Enfermedad Crónica , Humanos , Osteofito/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones
12.
Front Immunol ; 12: 801505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095883

RESUMEN

Purpose: Recent studies demonstrated a contribution of adrenoceptors (ARs) to osteoarthritis (OA) pathogenesis. Several AR subtypes are expressed in joint tissues and the ß2-AR subtype seems to play a major role during OA progression. However, the importance of ß2-AR has not yet been investigated in knee OA. Therefore, we examined the development of knee OA in ß2-AR-deficient (Adrb2-/- ) mice after surgical OA induction. Methods: OA was induced by destabilization of the medial meniscus (DMM) in male wildtype (WT) and Adrb2-/- mice. Cartilage degeneration and synovial inflammation were evaluated by histological scoring. Subchondral bone remodeling was analyzed using micro-CT. Osteoblast (alkaline phosphatase - ALP) and osteoclast (cathepsin K - CatK) activity were analyzed by immunostainings. To evaluate ß2-AR deficiency-associated effects, body weight, sympathetic tone (splenic norepinephrine (NE) via HPLC) and serum leptin levels (ELISA) were determined. Expression of the second major AR, the α2-AR, was analyzed in joint tissues by immunostaining. Results: WT and Adrb2-/- DMM mice developed comparable changes in cartilage degeneration and synovial inflammation. Adrb2-/- DMM mice displayed elevated calcified cartilage and subchondral bone plate thickness as well as increased epiphyseal BV/TV compared to WTs, while there were no significant differences in Sham animals. In the subchondral bone of Adrb2-/- mice, osteoblasts activity increased and osteoclast activity deceased. Adrb2-/- mice had significantly higher body weight and fat mass compared to WT mice. Serum leptin levels increased in Adrb2-/- DMM compared to WT DMM without any difference between the respective Shams. There was no difference in the development of meniscal ossicles and osteophytes or in the subarticular trabecular microstructure between Adrb2-/- and WT DMM as well as Adrb2-/- and WT Sham mice. Number of α2-AR-positive cells was lower in Adrb2-/- than in WT mice in all analyzed tissues and decreased in both Adrb2-/- and WT over time. Conclusion: We propose that the increased bone mass in Adrb2-/- DMM mice was not only due to ß2-AR deficiency but to a synergistic effect of OA and elevated leptin concentrations. Taken together, ß2-AR plays a major role in OA-related subchondral bone remodeling and is thus an attractive target for the exploration of novel therapeutic avenues.


Asunto(s)
Remodelación Ósea/genética , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/patología , Receptores Adrenérgicos beta 2/deficiencia , Animales , Biomarcadores , Cartílago Articular/diagnóstico por imagen , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Leptina/sangre , Masculino , Ratones , Ratones Noqueados , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/metabolismo , Osteoblastos/metabolismo , Osteofito/genética , Osteofito/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Índice de Severidad de la Enfermedad , Sinovitis/diagnóstico , Microtomografía por Rayos X
13.
Arthritis Rheumatol ; 72(8): 1266-1277, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32162789

RESUMEN

OBJECTIVE: To elucidate the role of decorin, a small leucine-rich proteoglycan, in the degradation of cartilage matrix during the progression of post-traumatic osteoarthritis (OA). METHODS: Three-month-old decorin-null (Dcn-/- ) and inducible decorin-knockout (Dcni KO ) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post-traumatic OA. The OA phenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy-nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro-computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild-type and Dcn-/- mice were stimulated with the inflammatory cytokine interleukin-1ß (IL-1ß) in vitro (n = 6 mice per group). The resulting chondrocyte response to IL-1ß and release of sGAGs were quantified. RESULTS: In both Dcn-/- and Dcni KO mice, the absence of decorin resulted in accelerated sGAG loss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P < 0.05). Also, Dcn-/- mice developed more salient osteophytes, illustrating more severe OA. In cartilage explants treated with IL-1ß, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion of sGAGs was released to the media from Dcn-/- mouse explants, in both live and devitalized conditions (P < 0.05). CONCLUSION: In post-traumatic OA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration.


Asunto(s)
Cartílago Articular/metabolismo , Decorina/metabolismo , Osteoartritis/metabolismo , Agrecanos/metabolismo , Animales , Condrocitos/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Interleucina-1beta/metabolismo , Proteínas Matrilinas/metabolismo , Meniscos Tibiales/metabolismo , Ratones , Ratones Noqueados , Osteoartritis/etiología , Osteofito/metabolismo , Heridas y Lesiones/complicaciones
14.
FEBS Open Bio ; 10(3): 434-443, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31975545

RESUMEN

Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, was recently demonstrated to be an effective treatment for osteoarthritis (OA). Vascular endothelium growth factor A (VEGFA) has been found to be upregulated in the articular cartilage, synovium and subchondral bone of OA patients, leading to cartilage degeneration, synovitis and osteophyte formation. However, the functions and mechanisms of LIPUS in regulating chondrocyte-derived VEGFA expression are still unclear. In this study, we investigated whether LIPUS attenuated OA progression by (a) decreasing the percentage of VEGFA-positive cells in mouse articular cartilage destabilised through medial meniscus surgery and (b) relieving interleukin-1ß-induced VEGFA expression in mouse primary chondrocytes. However, this function was negated by a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor. In addition, we found that LIPUS ameliorated VEGFA-mediated disorders in cartilage extracellular matrix metabolism and chondrocyte hypertrophy during OA development. In conclusion, our data indicate a novel effect of LIPUS in regulating the expression of osteoarthritic chondrocyte-derived VEGFA through the suppression of p38 MAPK activity.


Asunto(s)
Cartílago/metabolismo , Condrocitos/metabolismo , Terapia por Ultrasonido/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Cartílago/fisiología , Enfermedades de los Cartílagos/metabolismo , Cartílago Articular/metabolismo , Matriz Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Osteofito/metabolismo , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Sinovitis/metabolismo , Ondas Ultrasónicas , Factor A de Crecimiento Endotelial Vascular/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología
15.
Sci Rep ; 10(1): 673, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959806

RESUMEN

Osteophytes - bony outgrowths on joint structures - are found in healthy individuals but are specifically present in late osteoarthritis (OA). Osteophyte development and function is not well understood, yet biomechanical stimuli are thought to be critical. Bone adapts to mechanical forces via the cellular network of osteocytes. The involvement of osteocytes in osteophyte formation and maturation has not been unravelled. Forty-three osteophytes from tibias of 23 OA patients (65 ± 9 years) were analysed. The trabecular bone structure of osteophytes presented with fewer trabeculae of lower bone mineral density compared to subchondral bone. We identified 40% early stage and 60% late stage osteophytes that significantly differed in their trabecular bone characteristics. Osteophyte bone revealed a higher number of osteocytes and a lower number of empty osteocyte lacunae per bone area than the subchondral bone. We found that OA osteophytes consist of younger bone material comprised of woven and lamellar bone with the capacity to develop into a late stage osteophyte potentially via the involvement of the osteocyte network. Our analysis of OA osteophytes implies a transition from woven to lamellar bone as in physiological bone growth within a pathological joint. Therefore, osteophyte development and growth present a valuable research subject when aiming to investigate the osteogenic signalling cascade.


Asunto(s)
Densidad Ósea , Huesos/patología , Huesos/fisiología , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteocitos/fisiología , Osteofito/etiología , Osteofito/patología , Fenómenos Biomecánicos , Humanos , Osteocitos/patología , Osteogénesis , Osteofito/metabolismo , Osteofito/fisiopatología
16.
Arthritis Rheumatol ; 70(11): 1757-1768, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044894

RESUMEN

OBJECTIVE: Gene therapy holds great promise for the treatment of osteoarthritis (OA) because a single intraarticular injection can lead to long-term expression of therapeutic proteins within the joint. This study was undertaken to investigate the use of a helper-dependent adenovirus (HDAd)-mediated intraarticular gene therapy approach for long-term expression of interleukin-1 receptor antagonist (IL-1Ra) as sustained symptomatic and disease-modifying therapy for OA. METHODS: In mouse models of OA, efficacy of HDAd-IL-1Ra was evaluated by histologic analysis, micro-computed tomography (micro-CT), and hot plate analysis. In a horse OA model, safety and efficacy of HDAd-IL-1Ra were evaluated by blood chemistry, analyses of synovial fluid, synovial membrane, and cartilage, and gross pathology and lameness assessments. RESULTS: In skeletally immature mice, HDAd-IL-1Ra prevented development of cartilage damage, osteophytes, and synovitis. In skeletally immature and mature mice, treatment with HDAd-interleukin-1 receptor antagonist post-OA induction resulted in improved-albeit not significantly-cartilage status assessed histologically and significantly increased cartilage volume, cartilage surface, and bone surface covered by cartilage as assessed by micro-CT. Fewer osteophytes were observed in HDAd-IL-1Ra-treated skeletally immature mice. Synovitis was not affected in skeletally immature or mature mice. HDAd-IL-1Ra protected against disease-induced thermal hyperalgesia in skeletally mature mice. In the horse OA model, HDAd-IL-1Ra therapy significantly improved lameness parameters, indicating efficient symptomatic treatment. Moreover, macroscopically and histologically assessed cartilage and synovial membrane parameters were significantly improved, suggesting disease-modifying efficacy. CONCLUSION: These data from OA models in small and large animals demonstrated safe symptomatic and disease-modifying treatment with an HDAd-expressing IL-1Ra. Furthermore, this study establishes HDAd as a vector for joint gene therapy.


Asunto(s)
Artritis Experimental/terapia , Cartílago Articular/patología , Terapia Genética/métodos , Proteína Antagonista del Receptor de Interleucina 1/genética , Osteoartritis/terapia , Osteofito/patología , Rodilla de Cuadrúpedos/patología , Sinovitis/patología , Adenoviridae , Animales , Articulaciones del Carpo/diagnóstico por imagen , Articulaciones del Carpo/metabolismo , Articulaciones del Carpo/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Miembro Anterior , Caballos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Ligamentos Articulares/cirugía , Ratones , Osteoartritis/metabolismo , Osteofito/diagnóstico por imagen , Osteofito/metabolismo , Rodilla de Cuadrúpedos/diagnóstico por imagen , Rodilla de Cuadrúpedos/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinovitis/diagnóstico por imagen , Sinovitis/metabolismo , Microtomografía por Rayos X
17.
Biochem Biophys Res Commun ; 497(2): 756-761, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476740

RESUMEN

The objective of the present study is to demonstrate that a newly developed selective c-Fos/activator protein (AP)-1 inhibitor, T-5224, inhibits the expression of matrix metalloproteinases (MMPs) in human articular chondrocytes, and prevents cartilage destruction in an osteoarthritis (OA)-induced mouse model. First, we examined the effect of T-5224 on MMP and inflammatory cytokine expression by real-time polymerase chain reaction in human articular chondrocytes. We created an OA model by destabilization of the medial meniscus (DMM) in mice. T-5224 was orally administered once a day and the OA pathology was assessed by histological, immunohistochemical, and micro-computed tomography (CT) analyses. T-5224 inhibited the mRNA expression levels of MMP-1, 3, and 13, and interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and IL-6 in IL-1-stimulated human chondrocytes. Oral administration of T-5224 to OA-induced mice prevented cartilage destruction. The histological scores for OA were significantly better in the T-5224-treated group than the vehicle-treated group. Type X collagen and MMP-13 were not increased in the T-5224-treated group by immunohistochemical staining. Micro-CT analysis showed mild but apparent osteophyte development in the femoral condyle and antero-medial aspect of the tibia in the vehicle-treated group but not in the T-5224-treated group. Taken together, specific inhibition of c-Fos/AP-1 and the resulting inhibition of the transactivation of a broad spectrum of downstream MMPs, along with inflammatory cytokines, effectively prevented cartilage destruction and osteophyte formation.


Asunto(s)
Benzofenonas/uso terapéutico , Cartílago Articular/efectos de los fármacos , Isoxazoles/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteofito/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Factor de Transcripción AP-1/antagonistas & inhibidores , Administración Oral , Animales , Benzofenonas/administración & dosificación , Benzofenonas/farmacología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Humanos , Isoxazoles/administración & dosificación , Isoxazoles/farmacología , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Osteoartritis/patología , Osteofito/metabolismo , Osteofito/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factor de Transcripción AP-1/metabolismo
18.
Curr Opin Support Palliat Care ; 12(2): 148-153, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29438127

RESUMEN

PURPOSE OF REVIEW: Osteoarthritis is one of the most frequent causes of chronic pain. Because there is no causal treatment of osteoarthritis, sufficient pain control is of uppermost importance but often not met. The review reports recent advances and controversies in our understanding of osteoarthritis pain and its treatment. RECENT FINDINGS: Osteoarthritis pain is determined by processes at different levels. An important local factor of pain generation in the joint is inflammation such as synovitis, and neuropathic components of osteoarthritis pain are being discussed. Neuroplastic changes in the nociceptive system such as peripheral and central sensitization facilitate pain processing. Osteoarthritis pain may also be aggravated by general factors such as metabolic changes and diabetes mellitus, genetic and psychological factors. The review will also address mediators involved in osteoarthritis pain and treatment options. SUMMARY: Recent research is increasing our understanding of osteoarthritis pain by elucidating local factors in the joint which cause pain, by showing neuroplastic changes in the nociceptive system and by addressing the significance of general factors in pain such as metabolic changes. The weight of such factors may determine the pain pattern in individual patients.


Asunto(s)
Dolor Crónico/fisiopatología , Nocicepción/fisiología , Osteoartritis/fisiopatología , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Animales , Glucemia , Índice de Masa Corporal , Sensibilización del Sistema Nervioso Central/fisiología , Comorbilidad , Modelos Animales de Enfermedad , Humanos , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Plasticidad Neuronal/fisiología , Osteoartritis/diagnóstico por imagen , Osteofito/metabolismo , Fenotipo , Membrana Sinovial/metabolismo
19.
J Bone Miner Res ; 33(6): 1105-1113, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29377313

RESUMEN

Patients with anterior cruciate ligament (ACL) rupture are two times as likely to develop posttraumatic osteoarthritis (PTOA). Annually, there are ∼900,000 knee injuries in the United States, which account for ∼12% of all osteoarthritis (OA) cases. PTOA leads to reduced physical activity, deconditioning of the musculoskeletal system, and in severe cases requires joint replacement to restore function. Therefore, treatments that would prevent cartilage degradation post-injury would provide attractive alternatives to surgery. Sclerostin (Sost), a Wnt antagonist and a potent negative regulator of bone formation, has recently been implicated in regulating chondrocyte function in OA. To determine whether elevated levels of Sost play a protective role in PTOA, we examined the progression of OA using a noninvasive tibial compression overload model in SOST transgenic (SOSTTG ) and knockout (Sost-/- ) mice. Here we report that SOSTTG mice develop moderate OA and display significantly less advanced PTOA phenotype at 16 weeks post-injury compared with wild-type (WT) controls and Sost-/- . In addition, SOSTTG built ∼50% and ∼65% less osteophyte volume than WT and Sost-/- , respectively. Quantification of metalloproteinase (MMP) activity showed that SOSTTG had ∼2-fold less MMP activation than WT or Sost-/- , and this was supported by a significant reduction in MMP2/3 protein levels, suggesting that elevated levels of SOST inhibit the activity of proteolytic enzymes known to degrade articular cartilage matrix. Furthermore, intra-articular administration of recombinant Sost protein, immediately post-injury, also significantly decreased MMP activity levels relative to PBS-treated controls, and Sost activation in response to injury was TNFα and NF-κB dependent. These results provide in vivo evidence that sclerostin functions as a protective molecule immediately after joint injury to prevent cartilage degradation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/metabolismo , Lesiones del Ligamento Cruzado Anterior/patología , Proteínas Morfogenéticas Óseas/metabolismo , Glicoproteínas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Osteoartritis de la Rodilla/enzimología , Osteoartritis de la Rodilla/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Marcadores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos C57BL , Modelos Biológicos , FN-kappa B/metabolismo , Osteofito/metabolismo , Fenotipo , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
J Orthop Res ; 36(2): 699-710, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29058776

RESUMEN

Osteophytes are a typical radiographic finding during osteoarthritis (OA), but the mechanisms leading to their formation are not well known. Comparatively, fracture calluses have been studied extensively; therefore, drawing comparisons between osteophytes and fracture calluses may lead to a deeper understanding of osteophyte formation. In this study, we compared the time courses of osteophyte and fracture callus formation, and investigated mechanisms contributing to development of these structure. Additionally, we investigated the effect of mechanical unloading on the formation of both fracture calluses and osteophytes. Mice underwent either transverse femoral fracture or non-invasive anterior cruciate ligament rupture. Fracture callus and osteophyte size and ossification were evaluated after 3, 5, 7, 14, 21, or 28 days. Additional mice were subjected to hindlimb unloading after injury for 3, 7, or 14 days. Protease activity and gene expression profiles after injury were evaluated after 3 or 7 days of normal ambulation or hindlimb unloading using in vivo fluorescence reflectance imaging (FRI) and quantitative PCR. We found that fracture callus and osteophyte growth achieved similar developmental milestones, but fracture calluses formed and ossified at earlier time points. Hindlimb unloading ultimately led to a threefold decrease in chondro/osteophyte area, and a twofold decrease in fracture callus area. Unloading was also associated with decreased inflammation and protease activity in injured limbs detected with FRI, particularly following ACL rupture. qPCR analysis revealed disparate cellular responses in fractured femurs and injured joints, suggesting that fracture calluses and osteophytes may form via different inflammatory, anabolic, and catabolic pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:699-710, 2018.


Asunto(s)
Callo Óseo/metabolismo , Curación de Fractura , Osteogénesis , Osteofito/etiología , Animales , Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/patología , Fenómenos Biomecánicos , Huesos/diagnóstico por imagen , Huesos/patología , Callo Óseo/diagnóstico por imagen , Callo Óseo/patología , Femenino , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/patología , Expresión Génica , Ratones Endogámicos C57BL , Osteofito/diagnóstico por imagen , Osteofito/metabolismo , Osteofito/patología , Péptido Hidrolasas/metabolismo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA