Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936003

RESUMEN

: A series of free base and Zn(II) phthalocyanines featuring fluorenyl antennae linked by methoxy or oxo bridges to the phthalocyanine core (Pc) were synthesized and characterized. Selected linear and nonlinear (two-photon absorption) optical properties of these new compounds were subsequently studied. As previously observed for related porphyrin dendrimers bearing 2-fluorenyl peripheral dendrons, an efficient energy transfer occurs from the peripheral antennae to the central phthalocyanine core following excitation in the fluorenyl-based π-π* absorption band of these chromophores. Once excited, these compounds relax to the ground state, mostly by emitting intense red light or by undergoing intersystem crossing. As a result, the tetrafunctionalized Zn(II) phthalocyanines are fluorescent, but can also efficiently photosensitize molecular oxygen in tetrahydrofurane (THF), forming singlet oxygen with nearly comparable yields to bare Zn(II) phthalocyanine (ZnPc). In comparison with the latter complex, the positive role of the fluorenyl-containing antennae on one- and two-photon brightness (2PA) is presently demonstrated when appended in peripheral (ß) position to the phthalocyanine core. Furthermore, when compared to known porphyrin analogues, the interest in replacing the porphyrin by a phthalocyanine as the central core to obtain more fluorescent two-photon oxygen photosensitizers is clearly established. As such, this contribution paves the way for the future development of innovative biphotonic photosensitizers usable in theranostics.


Asunto(s)
Fluorenos/química , Indoles/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Transferencia de Energía , Fluorenos/síntesis química , Indoles/síntesis química , Isoindoles , Luz , Luminiscencia , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Fotones , Porfirinas/química , Oxígeno Singlete/aislamiento & purificación , Análisis Espectral
2.
Methods ; 109: 81-91, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27389303

RESUMEN

Singlet molecular oxygen, O2(a1Δg), is a Reactive Oxygen Species, ROS, that acts as a signaling and/or perturbing agent in mammalian cells, influencing processes that range from cell proliferation to cell death. Although the importance of O2(a1Δg) in this regard is acknowledged, an understanding of the targets and mechanisms of O2(a1Δg) action is inadequate. Thus, methods that better facilitate studies of O2(a1Δg) in mammalian cells are highly desired. This is particularly important because, as a consequence of its chemistry in a cell, O2(a1Δg) can spawn the generation of other ROS (e.g., the hydroxyl radical) that, in turn, can have a unique influence on cell behavior and function. Therefore, exerting better control and specificity in O2(a1Δg) experiments ultimately reduces the number of variables in general studies to unravel the details of ROS-dependent cell dynamics. In this article, we summarize our recent efforts to produce O2(a1Δg) with increased control and selectivity in microscope-based single-cell experiments. The topics addressed include (1) two-photon excitation of a photosensitizer using a focused laser to create a spatially-localized volume of O2(a1Δg) with sub-cellular dimensions, (2) protein-encapsulated photosensitizers that can be localized in a specific cellular domain using genetic engineering, and (3) direct excitation of dissolved oxygen in sensitizer-free experiments to selectively produce O2(a1Δg) at the expense of other ROS. We also comment on our recent efforts to monitor O2(a1Δg) in cells and to monitor the cell's response to O2(a1Δg).


Asunto(s)
Estrés Oxidativo , Fármacos Fotosensibilizantes/aislamiento & purificación , Especies Reactivas de Oxígeno/aislamiento & purificación , Oxígeno Singlete/aislamiento & purificación , Animales , Rayos Láser , Luz , Mamíferos , Oxidación-Reducción , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/química , Oxígeno Singlete/química
3.
Methods ; 109: 73-80, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27255120

RESUMEN

Over the past ten years, alternative methods for the rapid screening of PSs have been developed. In the present work, a study was undertaken to correlate the phototoxicity of plant extracts on either prokaryotic or eukaryotic cells, with the total oxidation status (TOS) as well as with their ability to produce 1O2. Results demonstrated that the extracts containing PSs that were active either on eukaryotic cells or bacteria increased their TOS after illumination, and that there was a certain degree of positive correlation between the extract phototoxic efficacy and TOS levels. The production of 1O2 by the illuminated extracts was indirectly measured by the use of the fluorescence of "singlet oxygen sensor green", which is a method that has proved highly sensitive for such measurement. 1O2 was detectable only upon illumination of the most active extracts. In addition, the oxidation of tryptophan and was employed as a method capable of measuring ROS generated by both type I and II ROS reactions. However, it turned out to be not sensitive enough to detect the species generated by plant extracts. Results demonstrated that the TOS method, initially developed to measure the oxidant status in plasma, can be readily applied to plant extracts. Unlike the method used to detect 1O2, the method employed for the detection of TOS proved to be accurate, since all the extracts that displayed a high phototoxic activity on either prokaryotic or eukaryotic cells, presented high TOS levels after illumination.


Asunto(s)
Estrés Oxidativo , Fármacos Fotosensibilizantes/aislamiento & purificación , Especies Reactivas de Oxígeno/aislamiento & purificación , Oxígeno Singlete/aislamiento & purificación , Oxidación-Reducción , Fármacos Fotosensibilizantes/química , Extractos Vegetales/química , Especies Reactivas de Oxígeno/química , Oxígeno Singlete/química , Triptófano/química
4.
Methods ; 109: 64-72, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302662

RESUMEN

We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen.


Asunto(s)
Antracenos/química , Colorantes Fluorescentes/química , Nanopartículas/química , Oxígeno Singlete/aislamiento & purificación , Citoplasma/química , Citoplasma/metabolismo , Células HeLa , Humanos , Dióxido de Silicio/química , Oxígeno Singlete/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...