Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207.761
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20220448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775552

RESUMEN

The present study investigated mushroom by-products as a substitute for emulsifiers in the microencapsulation of apricot kernel oil. Mushroom by-product emulsions were more viscous and had higher centrifugal (85.88±1.19 %) and kinetic (90.52±0.98 %) stability than control emulsions (Tween 20 was used as emulsifier). Additionally, spray-drying mushroom by-product emulsions yielded a high product yield (62.56±1.11 %). Furthermore, the oxidative stability of powder products containing mushroom by-products was observed to be higher than that of the control samples. For an accelerated oxidation test, the samples were kept at various temperatures (20, 37, and 60 °C). TOTOX values were assessed as indicators of oxidation, with values exceeding 30 indicating oxidation of the samples. Of the samples stored at 60 °C, the non-microencapsulated apricot kernel oil oxidized by the fifth day (41.12±0.13 TOTOX value), whereas the powder samples containing the mushroom by-products remained unoxidized until the end of the tenth day (37.05±0.08 TOTOX value). This study revealed that mushroom by-products could be a viable alternative for synthetic emulsifiers in the microencapsulation of apricot kernel oil. It has been observed that using mushroom by-products instead of synthetic emulsifiers in oil microencapsulation can also delay oxidative degradation in microencapsulated powders.


Asunto(s)
Emulsionantes , Emulsiones , Aceites de Plantas , Prunus armeniaca , Emulsiones/química , Emulsionantes/química , Aceites de Plantas/química , Prunus armeniaca/química , Composición de Medicamentos , Agaricales/química , Oxidación-Reducción , Agua/química
2.
Arch Microbiol ; 206(6): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775940

RESUMEN

In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-ß-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.


Asunto(s)
Acidiphilium , Hierro , Oxidación-Reducción , Hierro/metabolismo , Acidiphilium/metabolismo , Acidiphilium/crecimiento & desarrollo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Medios de Cultivo/química , Biomasa , Polihidroxibutiratos
3.
Food Res Int ; 187: 114357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763641

RESUMEN

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Asunto(s)
Aldehídos , Ácido Linoleico , Oxidación-Reducción , Espectrometría de Masas en Tándem , Aldehídos/metabolismo , Animales , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Cromatografía Liquida/métodos , Proteínas de Peces/metabolismo , Proteínas Musculares/metabolismo , Peces , Interacciones Hidrofóbicas e Hidrofílicas , Lipooxigenasa/metabolismo , Cromatografía Líquida con Espectrometría de Masas
4.
Food Res Int ; 187: 114361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763645

RESUMEN

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Asunto(s)
Carpas , Crioprotectores , Difosfatos , Almacenamiento de Alimentos , Congelación , Proteínas Musculares , Oxidación-Reducción , Trehalosa , Animales , Trehalosa/química , Almacenamiento de Alimentos/métodos , Difosfatos/química , Proteínas Musculares/química , Crioprotectores/química , Crioprotectores/farmacología , Proteínas de Peces/química , Conservación de Alimentos/métodos , Productos Pesqueros/análisis , Miofibrillas/química
5.
Food Res Int ; 187: 114402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763657

RESUMEN

Sacha inchi (Plukenetia huayllabambana) oil is a food matrix that contains more than 80 % of polyunsaturated fatty acids, especially linoleic and α-linolenic acids. The objective of this study was to develop blends of sacha inchi oil (P. huayllabambana) enriched with aguaje oil (Mauritia flexuosa L.f.) and evaluate the induction period, total carotenoid content, nutritional quality indices and oxidative stability from the fatty acid composition. The analytical tests were conducted for oil blends that had the following proportions: sacha inchi oil enriched with aguaje oil at 5, 10 and 20 %. The results prove that the enrichment of sacha inchi oil with aguaje oil (SIO-PH-AO) leads to an improvement in oxidative stability and nutritional and physical properties. For example, the oxidative stability index (OSI) varied from 0.87 to 2.53 h. The content of total carotenoids produces an increase from 0.35 to 99.90 mg/kg, while total polyphenols from 47.45 to 126.90 mg GAE/g, and chroma from 39.91 to 69.02 units. Regarding the fatty acid profile, the oxidizability value improves with the addition of aguaje oil. Reduces levels of PUFA, PUFA/SFA, and hypo-and hypercholesterolemic ratio (h/H). Additionally, an increase in SFA and MUFA levels, while the ω6/ω3 ratio remained constant. Finally, it can be noted that the enrichment of sacha inchi oil with aguaje oil (rich in carotenoids) provides better stability and can be used for commercial applications as a mechanism to establish new vegetable oils with better properties.


Asunto(s)
Carotenoides , Oxidación-Reducción , Aceites de Plantas , Carotenoides/análisis , Carotenoides/química , Aceites de Plantas/química , Valor Nutritivo , Alimentos Fortificados/análisis , Ácidos Grasos Insaturados/análisis
6.
Food Res Int ; 187: 114412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763662

RESUMEN

Lipid oxidation limits the shelf-life of dried microencapsulated oils (DMOs), such as infant formula. However, it is poorly understood how lipid oxidation is affected by different types of emulsifiers. To improve our understanding, we prepared DMOs with different emulsifiers (whey protein isolate (WPI), pea protein isolate (PPI), and non-proteinaceous CITREM) and studied lipid oxidation in both the free and encapsulated fat. Only a small difference in oxidation rate was observed between these fat fractions for all formulations. We ascribed this to a non-discrete distribution of the fractions and the subsequent low fractionation selectivity as shown by Raman microscopy. The DMO with PPI showed hardly any oxidation during a 7-week incubation at 40 °C, whereas the DMOs with WPI and CITREM both reached significantly higher contents of oxidation products (lipid hydroperoxides, aldehydes, and epoxides). The enhanced stability of DMO-PPI could not be ascribed to the presence of phytic acid. In conclusion, we demonstrate the potential of using PPI to produce oxidatively stable DMOs.


Asunto(s)
Emulsionantes , Emulsiones , Oxidación-Reducción , Emulsionantes/química , Emulsiones/química , Proteína de Suero de Leche/química , Proteínas de Guisantes/química , Secado por Pulverización , Composición de Medicamentos , Lípidos/química , Fórmulas Infantiles/química
7.
Food Res Int ; 187: 114424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763675

RESUMEN

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Asunto(s)
Culinaria , Patos , Congelación , Cromatografía de Gases y Espectrometría de Masas , Gusto , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Manipulación de Alimentos/métodos , Oxidación-Reducción , Calidad de los Alimentos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
8.
Food Res Int ; 187: 114452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763687

RESUMEN

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Asunto(s)
Antioxidantes , Emulsiones , Petroselinum , Fenoles , Extractos Vegetales , Hojas de la Planta , Aceite de Soja , Emulsiones/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceite de Soja/química , Fenoles/química , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Petroselinum/química , Hojas de la Planta/química , Oxidación-Reducción , Agua/química , Peroxidación de Lípido/efectos de los fármacos , Compuestos de Bifenilo/química , Picratos/química , Polifenoles/química , Polifenoles/farmacología
10.
Carbohydr Polym ; 338: 122168, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763718

RESUMEN

Enzymatic functionalization of oligosaccharides is a useful and environmentally friendly way to expand their structural chemical space and access to a wider range of applications in the health, food, feed, cosmetics and other sectors. In this work, we first tested the laccase/TEMPO system to generate oxidized forms of cellobiose and methyl ß-D-cellobiose, and obtained high yields of novel anionic disaccharides (>60 %) at pH 6.0. Laccase/TEMPO system was then applied to a mix of cellooligosaccharides and to pure D-cellopentaose. The occurrence of carbonyl and carboxyl groups in the oxidation products was shown by LC-HRMS, MALDI-TOF and reductive amination of the carbonyl groups was attempted with p-toluidine a low molar mass amine to form the Schiff base, then reduced by 2-picoline borane to generate a more stable amine bond. The new grafted products were characterized by LC-HRMS, LC-UV-MS/MS and covalent grafting was evidenced. Next, the same procedure was adopted to successfully graft a dye, the rhodamine 123, larger in size than toluidine. This two-step chemo-enzymatic approach, never reported before, for functionalization of oligosaccharides, offers attractive opportunities to anionic cellooligosaccharides and derived glucoconjugates of interest for biomedical or neutraceutical applications. It also paves the way for more environmentally-friendly cellulose fabric staining procedures.


Asunto(s)
Aminas , Lacasa , Oligosacáridos , Oligosacáridos/química , Aminas/química , Lacasa/química , Lacasa/metabolismo , Óxidos N-Cíclicos/química , Oxidación-Reducción , Celobiosa/química , Bases de Schiff/química
11.
Biosens Bioelectron ; 258: 116315, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701536

RESUMEN

Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication. Nevertheless, this approach poses substantial limitations regarding scalability. In response, we have developed a novel method for the complete integration of reduced graphene oxide (rGO) electrodes into LFA strips. We employed a CO2 laser to concurrently reduce graphene oxide and pattern nitrocellulose, exposing its backing to create connection sites impervious to sample leakage. Subsequently, rGO and nitrocellulose were juxtaposed and introduced into a roll-to-roll system using a wax printer. The exerted pressure facilitated the transfer of rGO onto the nitrocellulose. We systematically evaluated several electrochemical strategies to harness the synergy between rGO and LFAs. While certain challenges persist, our rGO transfer technology presents compelling potential for setting a new standard in electrochemical LFA fabrication.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Grafito , Sistemas de Atención de Punto , Grafito/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Diseño de Equipo , Colodión/química , Pruebas en el Punto de Atención , Límite de Detección , Oxidación-Reducción
12.
Bioorg Chem ; 147: 107418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703441

RESUMEN

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Asunto(s)
Biocatálisis , Oxidación-Reducción , Procesos Fotoquímicos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Estructura Molecular , NAD/química , NAD/metabolismo , Biomimética , Niacinamida/química , Niacinamida/metabolismo , Compuestos de Nitrógeno/química , Grafito
13.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723623

RESUMEN

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Asunto(s)
Hemina , Peróxido de Hidrógeno , Nanotubos de Carbono , Oxidación-Reducción , Peróxido de Hidrógeno/química , Hemina/química , Nanotubos de Carbono/química , Electrodos , Grafito/química , Puntos Cuánticos/química , Nitrógeno/química , Propiedades de Superficie , Técnicas Electroquímicas/métodos , Catálisis
14.
Environ Sci Technol ; 58(20): 8966-8975, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722667

RESUMEN

The absolute radical quantum yield (Φ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ•OH and ΦSO4•- at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ•OHPMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ•OHPMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to ΦSO4•-PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ, serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.


Asunto(s)
Radical Hidroxilo , Sulfatos , Sulfatos/química , Radical Hidroxilo/química , Purificación del Agua/métodos , Oxidación-Reducción , Peróxido de Hidrógeno/química
15.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727063

RESUMEN

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Asunto(s)
Autofagia , Antígeno B7-H1 , Inmunoterapia , Nanopartículas , Oxidación-Reducción , Autofagia/efectos de los fármacos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Animales , Humanos , Ratones , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ensayos de Selección de Medicamentos Antitumorales
16.
Environ Sci Technol ; 58(20): 8846-8856, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728579

RESUMEN

Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.


Asunto(s)
Oxidación-Reducción , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Carbón Orgánico/química , Cobalto/química , Adsorción , Carbono/química
17.
Environ Sci Technol ; 58(20): 8815-8824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733566

RESUMEN

This study presents the measurement of photochemical precursors during the lockdown period from January 23, 2020, to March 14, 2020, in Chengdu in response to the coronavirus (COVID-19) pandemic. To derive the lockdown impact on air quality, the observations are compared to the equivalent periods in the last 2 years. An observation-based model is used to investigate the atmospheric oxidation capacity change during lockdown. OH, HO2, and RO2 concentrations are simulated, which are elevated by 42, 220, and 277%, respectively, during the lockdown period, mainly due to the reduction in nitrogen oxides (NOx). However, the radical turnover rates, i.e., OH oxidation rate L(OH) and local ozone production rate P(O3), which determine the secondary intermediates formation and O3 formation, only increase by 24 and 48%, respectively. Therefore, the oxidation capacity increases slightly during lockdown, which is partly attributed to unchanged alkene concentrations. During the lockdown, alkene ozonolysis seems to be a significant radical primary source due to the elevated O3 concentrations. This unique data set during the lockdown period highlights the importance of controlling alkene emission to mitigate secondary pollution formation in Chengdu and may also be applicable in other regions of China given an expected NOx reduction due to the rapid transformation to electrified fleets in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Oxidación-Reducción , Ozono , China , Atmósfera/química , Óxidos de Nitrógeno/análisis , Monitoreo del Ambiente , SARS-CoV-2 , Humanos
18.
mBio ; 15(5): e0069024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717196

RESUMEN

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Asunto(s)
Citocromos , Compuestos Férricos , Geobacter , Oxidación-Reducción , Transporte de Electrón , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compuestos Férricos/metabolismo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo
19.
PLoS One ; 19(5): e0284642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718041

RESUMEN

The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.


Asunto(s)
Reparación del ADN , Guanina , Metagenoma , Oxidación-Reducción , Guanina/metabolismo , Respiraderos Hidrotermales/microbiología
20.
Sci Adv ; 10(19): eadl3549, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718121

RESUMEN

Metabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.


Asunto(s)
Ratones Noqueados , Miocitos Cardíacos , Prolina , Remodelación Ventricular , Animales , Prolina/metabolismo , Miocitos Cardíacos/metabolismo , Ratones , Ratas , Prolina Oxidasa/metabolismo , Prolina Oxidasa/genética , Metabolismo Energético , Miocardio/metabolismo , Miocardio/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/etiología , Modelos Animales de Enfermedad , Oxidación-Reducción , Masculino , Reprogramación Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA